» Articles » PMID: 26052749

Functional Subregions of the Human Entorhinal Cortex

Overview
Journal Elife
Specialty Biology
Date 2015 Jun 9
PMID 26052749
Citations 120
Authors
Affiliations
Soon will be listed here.
Abstract

The entorhinal cortex (EC) is the primary site of interactions between the neocortex and hippocampus. Studies in rodents and nonhuman primates suggest that EC can be divided into subregions that connect differentially with perirhinal cortex (PRC) vs parahippocampal cortex (PHC) and with hippocampal subfields along the proximo-distal axis. Here, we used high-resolution functional magnetic resonance imaging at 7 Tesla to identify functional subdivisions of the human EC. In two independent datasets, PRC showed preferential intrinsic functional connectivity with anterior-lateral EC and PHC with posterior-medial EC. These EC subregions, in turn, exhibited differential connectivity with proximal and distal subiculum. In contrast, connectivity of PRC and PHC with subiculum followed not only a proximal-distal but also an anterior-posterior gradient. Our data provide the first evidence that the human EC can be divided into functional subdivisions whose functional connectivity closely parallels the known anatomical connectivity patterns of the rodent and nonhuman primate EC.

Citing Articles

Volume electron microscopy reveals unique laminar synaptic characteristics in the human entorhinal cortex.

Plaza-Alonso S, Cano-Astorga N, DeFelipe J, Alonso-Nanclares L Elife. 2025; 14.

PMID: 39882848 PMC: 11867616. DOI: 10.7554/eLife.96144.


Elevated plasma p-tau231 is associated with reduced generalization and medial temporal lobe dynamic network flexibility among healthy older African Americans.

Budak M, Fausto B, Osiecka Z, Sheikh M, Perna R, Ashton N Alzheimers Res Ther. 2024; 16(1):253.

PMID: 39578853 PMC: 11583385. DOI: 10.1186/s13195-024-01619-0.


The human social cognitive network contains multiple regions within the amygdala.

Edmonds D, Salvo J, Anderson N, Lakshman M, Yang Q, Kay K Sci Adv. 2024; 10(47):eadp0453.

PMID: 39576857 PMC: 11584017. DOI: 10.1126/sciadv.adp0453.


Stereological Analysis of the Rhesus Monkey Perirhinal and Parahippocampal Cortices.

Villard J, Chareyron L, Banta Lavenex P, Amaral D, Lavenex P J Comp Neurol. 2024; 532(11):e25684.

PMID: 39552202 PMC: 11812466. DOI: 10.1002/cne.25684.


Entorhinal cortex-hippocampal circuit connectivity in health and disease.

Hernandez-Frausto M, Vivar C Front Hum Neurosci. 2024; 18:1448791.

PMID: 39372192 PMC: 11449717. DOI: 10.3389/fnhum.2024.1448791.


References
1.
Fair D, Schlaggar B, Cohen A, Miezin F, Dosenbach N, Wenger K . A method for using blocked and event-related fMRI data to study "resting state" functional connectivity. Neuroimage. 2007; 35(1):396-405. PMC: 2563954. DOI: 10.1016/j.neuroimage.2006.11.051. View

2.
Witter M, Wouterlood F, Naber P, van Haeften T . Anatomical organization of the parahippocampal-hippocampal network. Ann N Y Acad Sci. 2000; 911:1-24. DOI: 10.1111/j.1749-6632.2000.tb06716.x. View

3.
Fox M, Raichle M . Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci. 2007; 8(9):700-11. DOI: 10.1038/nrn2201. View

4.
Kahn I, Andrews-Hanna J, Vincent J, Snyder A, Buckner R . Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol. 2008; 100(1):129-39. PMC: 2493488. DOI: 10.1152/jn.00077.2008. View

5.
Yassa M, Stark C . A quantitative evaluation of cross-participant registration techniques for MRI studies of the medial temporal lobe. Neuroimage. 2008; 44(2):319-27. DOI: 10.1016/j.neuroimage.2008.09.016. View