» Articles » PMID: 26002841

System-level Impact of Mitochondria on Fungal Virulence: to Metabolism and Beyond

Overview
Journal FEMS Yeast Res
Specialty Microbiology
Date 2015 May 24
PMID 26002841
Citations 43
Authors
Affiliations
Soon will be listed here.
Abstract

The mitochondrion plays wide-ranging roles in eukaryotic cell physiology. In pathogenic fungi, this central metabolic organelle mediates a range of functions related to disease, from fitness of the pathogen to developmental and morphogenetic transitions to antifungal drug susceptibility. In this review, we present the latest findings in this area. We focus on likely mechanisms of mitochondrial impact on fungal virulence pathways through metabolism and stress responses, but also potentially via control over signaling pathways. We highlight fungal mitochondrial proteins that lack human homologs, and which could be inhibited as a novel approach to antifungal drug strategy.

Citing Articles

Blocking the shikimate pathway amplifies the impact of carvacrol on biofilm formation in .

Molaeitabari A, Dahms T Microbiol Spectr. 2025; 13(3):e0275424.

PMID: 39918333 PMC: 11878086. DOI: 10.1128/spectrum.02754-24.


Moving beyond species: fungal function in house dust provides novel targets for potential indicators of mold growth in homes.

Balasubrahmaniam N, King J, Hegarty B, Dannemiller K Microbiome. 2024; 12(1):231.

PMID: 39517024 PMC: 11549777. DOI: 10.1186/s40168-024-01915-9.


Synthetic and Natural Antifungal Substances in Cereal Grain Protection: A Review of Bright and Dark Sides.

Szczygiel T, Kozirog A, Otlewska A Molecules. 2024; 29(16).

PMID: 39202859 PMC: 11357261. DOI: 10.3390/molecules29163780.


Mitochondrial Protease Oct1p Regulates Mitochondrial Homeostasis and Influences Pathogenicity through Affecting Hyphal Growth and Biofilm Formation Activities in .

Zhu X, Jin F, Yang G, Zhuang T, Zhang C, Zhou H J Fungi (Basel). 2024; 10(6).

PMID: 38921377 PMC: 11204688. DOI: 10.3390/jof10060391.


The interplay between electron transport chain function and iron regulatory factors influences melanin formation in .

Xue P, Sanchez-Leon E, Hu G, Lee C, Black B, Brisland A mSphere. 2024; 9(5):e0025024.

PMID: 38687055 PMC: 11237718. DOI: 10.1128/msphere.00250-24.


References
1.
Fitzpatrick D, Logue M, Stajich J, Butler G . A fungal phylogeny based on 42 complete genomes derived from supertree and combined gene analysis. BMC Evol Biol. 2006; 6:99. PMC: 1679813. DOI: 10.1186/1471-2148-6-99. View

2.
Wideman J, Gawryluk R, Gray M, Dacks J . The ancient and widespread nature of the ER-mitochondria encounter structure. Mol Biol Evol. 2013; 30(9):2044-9. DOI: 10.1093/molbev/mst120. View

3.
Li D, Chen H, Florentino A, Alex D, Sikorski P, Fonzi W . Enzymatic dysfunction of mitochondrial complex I of the Candida albicans goa1 mutant is associated with increased reactive oxidants and cell death. Eukaryot Cell. 2011; 10(5):672-82. PMC: 3127659. DOI: 10.1128/EC.00303-10. View

4.
Honscher C, Mari M, Auffarth K, Bohnert M, Griffith J, Geerts W . Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev Cell. 2014; 30(1):86-94. DOI: 10.1016/j.devcel.2014.06.006. View

5.
Chen H, Calderone R, Sun N, Wang Y, Li D . Caloric restriction restores the chronological life span of the Goa1 null mutant of Candida albicans in spite of high cell levels of ROS. Fungal Genet Biol. 2012; 49(12):1023-32. DOI: 10.1016/j.fgb.2012.09.007. View