» Articles » PMID: 25993268

Encouragement of Enzyme Reaction Utilizing Heat Generation from Ferromagnetic Particles Subjected to an AC Magnetic Field

Overview
Journal PLoS One
Date 2015 May 21
PMID 25993268
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

We propose a method of activating an enzyme utilizing heat generation from ferromagnetic particles under an ac magnetic field. We immobilize α-amylase on the surface of ferromagnetic particles and analyze its activity. We find that when α-amylase/ferromagnetic particle hybrids, that is, ferromagnetic particles, on which α-amylase molecules are immobilized, are subjected to an ac magnetic field, the particles generate heat and as a result, α-amylase on the particles is heated up and activated. We next prepare a solution, in which α-amylase/ferromagnetic particle hybrids and free, nonimmobilized chitinase are dispersed, and analyze their activities. We find that when the solution is subjected to an ac magnetic field, the activity of α-amylase immobilized on the particles increases, whereas that of free chitinase hardly changes; in other words, only α-amylase immobilized on the particles is selectively activated due to heat generation from the particles.

Citing Articles

Energy Transfer from Magnetic Iron Oxide Nanoparticles: Implications for Magnetic Hyperthermia.

Tabacchi G, Armenia I, Bernardini G, Masciocchi N, Guagliardi A, Fois E ACS Appl Nano Mater. 2023; 6(14):12914-12921.

PMID: 37533540 PMC: 10391739. DOI: 10.1021/acsanm.3c01643.


Radiothermometric Study of the Effect of Amino Acid Mutation on the Characteristics of the Enzymatic System.

Ivanov Y, Malsagova K, Bukharina N, Vesnin S, Usanov S, Tatur V Diagnostics (Basel). 2022; 12(4).

PMID: 35453991 PMC: 9024681. DOI: 10.3390/diagnostics12040943.


Stimulus-Responsive Regulation of Enzyme Activity for One-Step and Multi-Step Syntheses.

Claassen C, Gerlach T, Rother D Adv Synth Catal. 2019; 361(11):2387-2401.

PMID: 31244574 PMC: 6582597. DOI: 10.1002/adsc.201900169.


Modulation of the Catalytic Properties of Lipase B from by Immobilization on Tailor-Made Magnetic Iron Oxide Nanoparticles: The Key Role of Nanocarrier Surface Engineering.

Vinambres M, Filice M, Marciello M Polymers (Basel). 2019; 10(6).

PMID: 30966649 PMC: 6404122. DOI: 10.3390/polym10060615.


Electrophoretic Mechanism of Au(SR) Heating in Radiofrequency Fields.

Collins C, Tofanelli M, Noblitt S, Ackerson C J Phys Chem Lett. 2018; 9(7):1516-1521.

PMID: 29521094 PMC: 5886805. DOI: 10.1021/acs.jpclett.8b00327.


References
1.
Marshall C . Cold-adapted enzymes. Trends Biotechnol. 1997; 15(9):359-64. DOI: 10.1016/S0167-7799(97)01086-X. View

2.
Reena Mary A, Narayanan T, Sunny V, Sakthikumar D, Yoshida Y, Joy P . Synthesis of Bio-Compatible SPION-based Aqueous Ferrofluids and Evaluation of RadioFrequency Power Loss for Magnetic Hyperthermia. Nanoscale Res Lett. 2010; 5(10):1706-11. PMC: 2956030. DOI: 10.1007/s11671-010-9729-4. View

3.
Klyachko N, Sokolsky-Papkov M, Pothayee N, Efremova M, Gulin D, Pothayee N . Changing the enzyme reaction rate in magnetic nanosuspensions by a non-heating magnetic field. Angew Chem Int Ed Engl. 2012; 51(48):12016-9. PMC: 3571765. DOI: 10.1002/anie.201205905. View

4.
Mizuki T, Watanabe N, Nagaoka Y, Fukushima T, Morimoto H, Usami R . Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field. Biochem Biophys Res Commun. 2010; 393(4):779-82. DOI: 10.1016/j.bbrc.2010.02.081. View

5.
Dias J, Moros M, Del Pino P, Rivera S, Grazu V, de la Fuente J . DNA as a molecular local thermal probe for the analysis of magnetic hyperthermia. Angew Chem Int Ed Engl. 2013; 52(44):11526-9. DOI: 10.1002/anie.201305835. View