Syahdi R, Jasial S, Maeda I, Miyao T
ACS Omega. 2024; 9(37):38957-38969.
PMID: 39310180
PMC: 11411525.
DOI: 10.1021/acsomega.4c05433.
Zhang R, Nolte D, Sanchez-Villalobos C, Ghosh S, Pal R
Nat Commun. 2024; 15(1):5072.
PMID: 38871711
PMC: 11176398.
DOI: 10.1038/s41467-024-49372-0.
Shirasawa R, Takaki K, Miyao T
ACS Omega. 2024; 9(8):9463-9474.
PMID: 38434845
PMC: 10905595.
DOI: 10.1021/acsomega.3c09047.
He D, Liu Q, Mi Y, Meng Q, Xu L, Hou C
Adv Sci (Weinh). 2024; 11(11):e2307245.
PMID: 38204214
PMC: 10962488.
DOI: 10.1002/advs.202307245.
Jasial S, Hu J, Miyao T, Hirama Y, Onishi S, Matsui R
ACS Pharmacol Transl Sci. 2023; 6(1):139-150.
PMID: 36654744
PMC: 9841774.
DOI: 10.1021/acsptsci.2c00193.
Calculation of exact Shapley values for support vector machines with Tanimoto kernel enables model interpretation.
Feldmann C, Bajorath J
iScience. 2022; 25(9):105023.
PMID: 36105596
PMC: 9464958.
DOI: 10.1016/j.isci.2022.105023.
Extended Connectivity Fingerprints as a Chemical Reaction Representation for Enantioselective Organophosphorus-Catalyzed Asymmetric Reaction Prediction.
Asahara R, Miyao T
ACS Omega. 2022; 7(30):26952-26964.
PMID: 35936487
PMC: 9352214.
DOI: 10.1021/acsomega.2c03812.
Evolution of Support Vector Machine and Regression Modeling in Chemoinformatics and Drug Discovery.
Rodriguez-Perez R, Bajorath J
J Comput Aided Mol Des. 2022; 36(5):355-362.
PMID: 35304657
PMC: 9325859.
DOI: 10.1007/s10822-022-00442-9.
Explainable machine learning predictions of dual-target compounds reveal characteristic structural features.
Feldmann C, Philipps M, Bajorath J
Sci Rep. 2021; 11(1):21594.
PMID: 34732806
PMC: 8566526.
DOI: 10.1038/s41598-021-01099-4.
Interpretation of Ligand-Based Activity Cliff Prediction Models Using the Matched Molecular Pair Kernel.
Tamura S, Jasial S, Miyao T, Funatsu K
Molecules. 2021; 26(16).
PMID: 34443503
PMC: 8401777.
DOI: 10.3390/molecules26164916.
Feature importance correlation from machine learning indicates functional relationships between proteins and similar compound binding characteristics.
Rodriguez-Perez R, Bajorath J
Sci Rep. 2021; 11(1):14245.
PMID: 34244588
PMC: 8270985.
DOI: 10.1038/s41598-021-93771-y.
Machine learning reveals that structural features distinguishing promiscuous and non-promiscuous compounds depend on target combinations.
Feldmann C, Bajorath J
Sci Rep. 2021; 11(1):7863.
PMID: 33846469
PMC: 8042106.
DOI: 10.1038/s41598-021-87042-z.
Predicting Isoform-Selective Carbonic Anhydrase Inhibitors via Machine Learning and Rationalizing Structural Features Important for Selectivity.
Galati S, Yonchev D, Rodriguez-Perez R, Vogt M, Tuccinardi T, Bajorath J
ACS Omega. 2021; 6(5):4080-4089.
PMID: 33585783
PMC: 7876851.
DOI: 10.1021/acsomega.0c06153.
Interpretation of machine learning models using shapley values: application to compound potency and multi-target activity predictions.
Rodriguez-Perez R, Bajorath J
J Comput Aided Mol Des. 2020; 34(10):1013-1026.
PMID: 32361862
PMC: 7449951.
DOI: 10.1007/s10822-020-00314-0.
Data structures for computational compound promiscuity analysis and exemplary applications to inhibitors of the human kinome.
Miljkovic F, Bajorath J
J Comput Aided Mol Des. 2019; 34(1):1-10.
PMID: 31792884
DOI: 10.1007/s10822-019-00266-0.
Learning To Predict Reaction Conditions: Relationships between Solvent, Molecular Structure, and Catalyst.
Walker E, Kammeraad J, Goetz J, Robo M, Tewari A, Zimmerman P
J Chem Inf Model. 2019; 59(9):3645-3654.
PMID: 31381340
PMC: 7167595.
DOI: 10.1021/acs.jcim.9b00313.
Support Vector Machine Classification and Regression Prioritize Different Structural Features for Binary Compound Activity and Potency Value Prediction.
Rodriguez-Perez R, Vogt M, Bajorath J
ACS Omega. 2018; 2(10):6371-6379.
PMID: 30023518
PMC: 6045367.
DOI: 10.1021/acsomega.7b01079.
Shallow Representation Learning via Kernel PCA Improves QSAR Modelability.
Rensi S, Altman R
J Chem Inf Model. 2017; 57(8):1859-1867.
PMID: 28727421
PMC: 5942586.
DOI: 10.1021/acs.jcim.6b00694.