» Articles » PMID: 25985417

Substantial Improvement of Perovskite Solar Cells Stability by Pinhole-free Hole Transport Layer with Doping Engineering

Overview
Journal Sci Rep
Specialty Science
Date 2015 May 19
PMID 25985417
Citations 11
Authors
Affiliations
Soon will be listed here.
Abstract

We fabricated perovskite solar cells using a triple-layer of n-type doped, intrinsic, and p-type doped 2,2',7,7'-tetrakis(N,N'-di-p-methoxyphenylamine)-9,9'-spirobifluorene (spiro-OMeTAD) (n-i-p) as hole transport layer (HTL) by vacuum evaporation. The doping concentration for n-type doped spiro-OMeTAD was optimized to adjust the highest occupied molecular orbital of spiro-OMeTAD to match the valence band maximum of perovskite for efficient hole extraction while maintaining a high open circuit voltage. Time-dependent solar cell performance measurements revealed significantly improved air stability for perovskite solar cells with the n-i-p structured spiro-OMeTAD HTL showing sustained efficiencies even after 840 h of air exposure.

Citing Articles

Simulation and optimization of 30.17% high performance N-type TCO-free inverted perovskite solar cell using inorganic transport materials.

Nyiekaa E, Aika T, Danladi E, Akhabue C, Orukpe P Sci Rep. 2024; 14(1):12024.

PMID: 38797811 PMC: 11128456. DOI: 10.1038/s41598-024-62882-7.


New ferrocenyl-containing organic hole-transporting materials for perovskite solar cells in regular (n-i-p) and inverted (p-i-n) architectures.

Jia J, Duan L, Chen Y, Zong X, Sun Z, Wu Q RSC Adv. 2022; 9(1):216-223.

PMID: 35521582 PMC: 9059360. DOI: 10.1039/c8ra08946a.


Molecularly engineered hole-transport material for low-cost perovskite solar cells.

Pashaei B, Bellani S, Shahroosvand H, Bonaccorso F Chem Sci. 2021; 11(9):2429-2439.

PMID: 34084407 PMC: 8157471. DOI: 10.1039/c9sc05694g.


Thin Thermally Evaporated Organic Hole Transport Layers for Reduced Optical Losses in Substrate-Configuration Perovskite Solar Cells.

Feleki B, Weijtens C, Wienk M, Janssen R ACS Appl Energy Mater. 2021; 4(4):3033-3043.

PMID: 34056551 PMC: 8153398. DOI: 10.1021/acsaem.0c02653.


Perovskite Solar Cells toward Eco-Friendly Printing.

Chang X, Fan Y, Zhao K, Fang J, Liu D, Tang M Research (Wash D C). 2021; 2021:9671892.

PMID: 33681813 PMC: 7906024. DOI: 10.34133/2021/9671892.


References
1.
Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M . Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature. 2013; 499(7458):316-9. DOI: 10.1038/nature12340. View

2.
Kim H, Lee J, Yantara N, Boix P, Kulkarni S, Mhaisalkar S . High efficiency solid-state sensitized solar cell-based on submicrometer rutile TiO2 nanorod and CH3NH3PbI3 perovskite sensitizer. Nano Lett. 2013; 13(6):2412-7. DOI: 10.1021/nl400286w. View

3.
Im J, Lee C, Lee J, Park S, Park N . 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale. 2011; 3(10):4088-93. DOI: 10.1039/c1nr10867k. View

4.
Zhou H, Chen Q, Li G, Luo S, Song T, Duan H . Photovoltaics. Interface engineering of highly efficient perovskite solar cells. Science. 2014; 345(6196):542-6. DOI: 10.1126/science.1254050. View

5.
Kojima A, Teshima K, Shirai Y, Miyasaka T . Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc. 2009; 131(17):6050-1. DOI: 10.1021/ja809598r. View