» Articles » PMID: 25980349

Phylogenomics of Mycobacterium Nitrate Reductase Operon

Overview
Journal Curr Microbiol
Specialty Microbiology
Date 2015 May 19
PMID 25980349
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

NarGHJI operon encodes a nitrate reductase that can reduce nitrate to nitrite. This process enhances bacterial survival by nitrate respiration under anaerobic conditions. NarGHJI operon exists in many bacteria, especially saprophytic bacteria living in soil which play a key role in the nitrogen cycle. Most actinomycetes, including Mycobacterium tuberculosis, possess NarGHJI operons. M. tuberculosis is a facultative intracellular pathogen that expands in macrophages and has the ability to persist in a non-replicative form in granuloma lifelong. Nitrogen and nitrogen compounds play crucial roles in the struggle between M. tuberculosis and host. M. tuberculosis can use nitrate as a final electron acceptor under anaerobic conditions to enhance its survival. In this article, we reviewed the mechanisms regulating nitrate reductase expression and affecting its activity. Potential genes involved in regulating the nitrate reductase expression in M. tuberculosis were identified. The conserved NarG might be an alternative mycobacterium taxonomic marker.

Citing Articles

Corynebacterium pseudotuberculosis: Whole genome sequencing reveals unforeseen and relevant genetic diversity in this pathogen.

Hiller E, Horz V, Sting R PLoS One. 2024; 19(8):e0309282.

PMID: 39186721 PMC: 11346948. DOI: 10.1371/journal.pone.0309282.


Orphan response regulator NnaR is critical for nitrate and nitrite assimilation in .

Simcox B, Rohde K Front Cell Infect Microbiol. 2024; 14:1411333.

PMID: 38854658 PMC: 11162112. DOI: 10.3389/fcimb.2024.1411333.


Nitrate Reductase NarGHJI Modulates Virulence via Regulation of Expression in Methicillin-Resistant Strain USA300 LAC.

Li Y, Pan T, Cao R, Li W, He Z, Sun B Microbiol Spectr. 2023; 11(3):e0359622.

PMID: 37199609 PMC: 10269880. DOI: 10.1128/spectrum.03596-22.


The Effects of Paroxetine on Benthic Microbial Food Web and Nitrogen Transformation in River Sediments.

Li Y, Chen X, Wang X, Shang J, Niu L, Wang L Int J Environ Res Public Health. 2022; 19(21).

PMID: 36361481 PMC: 9657768. DOI: 10.3390/ijerph192114602.


The Orphan Response Regulator Rv3143 Modulates the Activity of the NADH Dehydrogenase Complex (Nuo) in Protein-Protein Interactions.

Plocinska R, Wasik K, Plocinski P, Lechowicz E, Antczak M, Blaszczyk E Front Cell Infect Microbiol. 2022; 12:909507.

PMID: 35837472 PMC: 9274095. DOI: 10.3389/fcimb.2022.909507.


References
1.
Dos Vultos T, Mestre O, Rauzier J, Golec M, Rastogi N, Rasolofo V . Evolution and diversity of clonal bacteria: the paradigm of Mycobacterium tuberculosis. PLoS One. 2008; 3(2):e1538. PMC: 2211405. DOI: 10.1371/journal.pone.0001538. View

2.
Gusarov I, Shatalin K, Starodubtseva M, Nudler E . Endogenous nitric oxide protects bacteria against a wide spectrum of antibiotics. Science. 2009; 325(5946):1380-4. PMC: 2929644. DOI: 10.1126/science.1175439. View

3.
MacMicking J, NORTH R, LaCourse R, Mudgett J, Shah S, Nathan C . Identification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci U S A. 1997; 94(10):5243-8. PMC: 24663. DOI: 10.1073/pnas.94.10.5243. View

4.
Florczyk M, McCue L, Purkayastha A, Currenti E, Wolin M, McDonough K . A family of acr-coregulated Mycobacterium tuberculosis genes shares a common DNA motif and requires Rv3133c (dosR or devR) for expression. Infect Immun. 2003; 71(9):5332-43. PMC: 187371. DOI: 10.1128/IAI.71.9.5332-5343.2003. View

5.
Blasco F, Iobbi C, Ratouchniak J, Bonnefoy V, Chippaux M . Nitrate reductases of Escherichia coli: sequence of the second nitrate reductase and comparison with that encoded by the narGHJI operon. Mol Gen Genet. 1990; 222(1):104-11. DOI: 10.1007/BF00283030. View