» Articles » PMID: 25955890

Hitting the Sweet Spot-glycans As Targets of Fungal Defense Effector Proteins

Overview
Journal Molecules
Publisher MDPI
Specialty Biology
Date 2015 May 9
PMID 25955890
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

Organisms which rely solely on innate defense systems must combat a large number of antagonists with a comparably low number of defense effector molecules. As one solution of this problem, these organisms have evolved effector molecules targeting epitopes that are conserved between different antagonists of a specific taxon or, if possible, even of different taxa. In order to restrict the activity of the defense effector molecules to physiologically relevant taxa, these target epitopes should, on the other hand, be taxon-specific and easily accessible. Glycans fulfill all these requirements and are therefore a preferred target of defense effector molecules, in particular defense proteins. Here, we review this defense strategy using the example of the defense system of multicellular (filamentous) fungi against microbial competitors and animal predators.

Citing Articles

het-B allorecognition in Podospora anserina is determined by pseudo-allelic interaction of genes encoding a HET and lectin fold domain protein and a PII-like protein.

Clave C, Dheur S, Ament-Velasquez S, Granger-Farbos A, Saupe S PLoS Genet. 2024; 20(2):e1011114.

PMID: 38346076 PMC: 10890737. DOI: 10.1371/journal.pgen.1011114.


Snowball: a novel gene family required for developmental patterning of fruiting bodies of mushroom-forming fungi (Agaricomycetes).

Foldi C, Merenyi Z, Balazs B, Csernetics A, Miklovics N, Wu H mSystems. 2024; 9(3):e0120823.

PMID: 38334416 PMC: 10949477. DOI: 10.1128/msystems.01208-23.


PriA is involved in Pleurotus ostreatus development and defense against Pseudomonas tolaasii.

Yan B, Ma A Antonie Van Leeuwenhoek. 2023; 117(1):1.

PMID: 38095768 DOI: 10.1007/s10482-023-01900-6.


Lessons on fruiting body morphogenesis from genomes and transcriptomes of .

Nagy L, Vonk P, Kunzler M, Foldi C, Viragh M, Ohm R Stud Mycol. 2023; 104:1-85.

PMID: 37351542 PMC: 10282164. DOI: 10.3114/sim.2022.104.01.


A lectin gene is involved in the defense of against the mite predator .

Liu J, Li H, Luo X, Ma L, Li C, Qu S Front Microbiol. 2023; 14:1191500.

PMID: 37180275 PMC: 10174108. DOI: 10.3389/fmicb.2023.1191500.


References
1.
Dimarcq J, Bulet P, Hetru C, Hoffmann J . Cysteine-rich antimicrobial peptides in invertebrates. Biopolymers. 1999; 47(6):465-77. DOI: 10.1002/(SICI)1097-0282(1998)47:6<465::AID-BIP5>3.0.CO;2-#. View

2.
During K, Porsch P, Mahn A, Brinkmann O, Gieffers W . The non-enzymatic microbicidal activity of lysozymes. FEBS Lett. 1999; 449(2-3):93-100. DOI: 10.1016/s0014-5793(99)00405-6. View

3.
Yocum R, Waxman D, Rasmussen J, Strominger J . Mechanism of penicillin action: penicillin and substrate bind covalently to the same active site serine in two bacterial D-alanine carboxypeptidases. Proc Natl Acad Sci U S A. 1979; 76(6):2730-4. PMC: 383682. DOI: 10.1073/pnas.76.6.2730. View

4.
Sacchettini J, Baum L, Brewer C . Multivalent protein-carbohydrate interactions. A new paradigm for supermolecular assembly and signal transduction. Biochemistry. 2001; 40(10):3009-15. DOI: 10.1021/bi002544j. View

5.
Ibrahim H, Matsuzaki T, Aoki T . Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Lett. 2001; 506(1):27-32. DOI: 10.1016/s0014-5793(01)02872-1. View