» Articles » PMID: 25934628

2,3-Butanediol Metabolism in the Acetogen Acetobacterium Woodii

Overview
Date 2015 May 3
PMID 25934628
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

The acetogenic bacterium Acetobacterium woodii is able to reduce CO2 to acetate via the Wood-Ljungdahl pathway. Only recently we demonstrated that degradation of 1,2-propanediol by A. woodii was not dependent on acetogenesis, but that it is disproportionated to propanol and propionate. Here, we analyzed the metabolism of A. woodii on another diol, 2,3-butanediol. Experiments with growing and resting cells, metabolite analysis and enzymatic measurements revealed that 2,3-butanediol is oxidized in an NAD(+)-dependent manner to acetate via the intermediates acetoin, acetaldehyde, and acetyl coenzyme A. Ethanol was not detected as an end product, either in growing cultures or in cell suspensions. Apparently, all reducing equivalents originating from the oxidation of 2,3-butanediol were funneled into the Wood-Ljungdahl pathway to reduce CO2 to another acetate. Thus, the metabolism of 2,3-butanediol requires the Wood-Ljungdahl pathway.

Citing Articles

Translational efficiency in gas-fermenting bacteria: Adding a new layer of regulation to gene expression in acetogens.

Re A iScience. 2023; 26(12):108383.

PMID: 38034355 PMC: 10684804. DOI: 10.1016/j.isci.2023.108383.


Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia.

Parera Olm I, Sousa D Adv Biochem Eng Biotechnol. 2021; 180:373-407.

PMID: 34811579 DOI: 10.1007/10_2021_180.


Overcoming Energetic Barriers in Acetogenic C1 Conversion.

Katsyv A, Muller V Front Bioeng Biotechnol. 2021; 8:621166.

PMID: 33425882 PMC: 7793690. DOI: 10.3389/fbioe.2020.621166.


Exploring Bacterial Microcompartments in the Acetogenic Bacterium .

Chowdhury N, Alberti L, Linder M, Muller V Front Microbiol. 2020; 11:593467.

PMID: 33178174 PMC: 7593272. DOI: 10.3389/fmicb.2020.593467.


Defining Genomic and Predicted Metabolic Features of the Genus.

Ross D, Marshall C, Gulliver D, May H, Norman R mSystems. 2020; 5(5).

PMID: 32934112 PMC: 7498680. DOI: 10.1128/mSystems.00277-20.


References
1.
Schuchmann K, Muller V . A bacterial electron-bifurcating hydrogenase. J Biol Chem. 2012; 287(37):31165-71. PMC: 3438948. DOI: 10.1074/jbc.M112.395038. View

2.
Heise R, Muller V, Gottschalk G . Presence of a sodium-translocating ATPase in membrane vesicles of the homoacetogenic bacterium Acetobacterium woodii. Eur J Biochem. 1992; 206(2):553-7. DOI: 10.1111/j.1432-1033.1992.tb16959.x. View

3.
Drake H, Gossner A, Daniel S . Old acetogens, new light. Ann N Y Acad Sci. 2008; 1125:100-28. DOI: 10.1196/annals.1419.016. View

4.
Dong X, Plugge C, Stams A . Anaerobic degradation of propionate by a mesophilic acetogenic bacterium in coculture and triculture with different methanogens. Appl Environ Microbiol. 1994; 60(8):2834-8. PMC: 201730. DOI: 10.1128/aem.60.8.2834-2838.1994. View

5.
Hugenholtz J, Ljungdahl L . Electron transport and electrochemical proton gradient in membrane vesicles of Clostridium thermoautotrophicum. J Bacteriol. 1989; 171(5):2873-5. PMC: 209977. DOI: 10.1128/jb.171.5.2873-2875.1989. View