» Articles » PMID: 2591367

Primary Structure of Sensory Rhodopsin I, a Prokaryotic Photoreceptor

Overview
Journal EMBO J
Date 1989 Dec 20
PMID 2591367
Citations 31
Authors
Affiliations
Soon will be listed here.
Abstract

The gene coding for sensory rhodopsin I (SR-I) has been identified in a restriction fragment of genomic DNA from the Halobacterium halobium strain L33. Of the 1014 nucleotides whose sequence was determined, 720 belong to the structural gene of SR-I. In the 5' non-coding region two putative promoter elements and a ribosomal binding site have been identified. The 3' flanking region bears a potential terminator structure. The SR-I protein moiety carries no signal peptide and is not processed at its N terminus. The C terminus, however, lacks the last aspartic acid residue encoded by the gene. Analysis of the primary structure of SR-I reveals no consistent homology with the eukaryotic photoreceptor rhodopsin, but 14% homology with the halobacterial ion pumps, bacteriorhodopsin (BR) and halorhodopsin (HR). Residues conserved in all three proteins are discussed with respect to their contribution to secondary structure, retinal binding and ion translocation. The aspartic acid residue which mediates in BR the reprotonation of the Schiff base (D96) is replaced in SR-I by a tyrosine (Y87). This amino acid replacement is proposed to be of crucial importance in the evolution of the slow-cycling photosensing pigment SR-I.

Citing Articles

Genome-Wide Identification of G Protein-Coupled Receptors in Ciliated Eukaryotes.

Luo S, Zhang P, Miao W, Xiong J Int J Mol Sci. 2023; 24(4).

PMID: 36835283 PMC: 9960496. DOI: 10.3390/ijms24043869.


Potential Activities of Freshwater Exo- and Endo-Acting Extracellular Peptidases in East Tennessee and the Pocono Mountains.

Mullen L, Boerrigter K, Ferriero N, Rosalsky J, Barrett A, Murray P Front Microbiol. 2018; 9:368.

PMID: 29559961 PMC: 5845674. DOI: 10.3389/fmicb.2018.00368.


Origination of the Protein Fold Repertoire from Oily Pluripotent Peptides.

Mannige R Proteomes. 2017; 2(2):154-168.

PMID: 28250375 PMC: 5302733. DOI: 10.3390/proteomes2020154.


Eukaryotic G protein-coupled receptors as descendants of prokaryotic sodium-translocating rhodopsins.

Shalaeva D, Galperin M, Mulkidjanian A Biol Direct. 2015; 10:63.

PMID: 26472483 PMC: 4608122. DOI: 10.1186/s13062-015-0091-4.


The signal transfer from the receptor NpSRII to the transducer NpHtrII is not hampered by the D75N mutation.

Holterhues J, Bordignon E, Klose D, Rickert C, Klare J, Martell S Biophys J. 2011; 100(9):2275-82.

PMID: 21539797 PMC: 3149259. DOI: 10.1016/j.bpj.2011.03.017.


References
1.
Reiter W, Palm P, Zillig W . Analysis of transcription in the archaebacterium Sulfolobus indicates that archaebacterial promoters are homologous to eukaryotic pol II promoters. Nucleic Acids Res. 1988; 16(1):1-19. PMC: 334609. DOI: 10.1093/nar/16.1.1. View

2.
Alam M, Oesterhelt D . Morphology, function and isolation of halobacterial flagella. J Mol Biol. 1984; 176(4):459-75. DOI: 10.1016/0022-2836(84)90172-4. View

3.
Hanahan D . Studies on transformation of Escherichia coli with plasmids. J Mol Biol. 1983; 166(4):557-80. DOI: 10.1016/s0022-2836(83)80284-8. View

4.
Oesterhelt D, Hegemann P, Tittor J . The photocycle of the chloride pump halorhodopsin. II: Quantum yields and a kinetic model. EMBO J. 1985; 4(9):2351-6. PMC: 554509. DOI: 10.1002/j.1460-2075.1985.tb03938.x. View

5.
Tittor J, Soell C, Oesterhelt D, Butt H, Bamberg E . A defective proton pump, point-mutated bacteriorhodopsin Asp96----Asn is fully reactivated by azide. EMBO J. 1989; 8(11):3477-82. PMC: 401504. DOI: 10.1002/j.1460-2075.1989.tb08512.x. View