» Articles » PMID: 25909566

Toward Cove-edged Low Band Gap Graphene Nanoribbons

Overview
Journal J Am Chem Soc
Specialty Chemistry
Date 2015 Apr 25
PMID 25909566
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Graphene nanoribbons (GNRs), defined as nanometer-wide strips of graphene, have attracted increasing attention as promising candidates for next-generation semiconductors. Here, we demonstrate a bottom-up strategy toward novel low band gap GNRs (Eg = 1.70 eV) with a well-defined cove-type periphery both in solution and on a solid substrate surface with chrysene as the key monomer. Corresponding cyclized chrysene-based oligomers consisting of the dimer and tetramer are obtained via an Ullmann coupling followed by oxidative intramolecular cyclodehydrogenation in solution, and much higher GNR homologues via on-surface synthesis. These oligomers adopt nonplanar structures due to the steric repulsion between the two C-H bonds at the inner cove position. Characterizations by single crystal X-ray analysis, UV-vis absorption spectroscopy, NMR spectroscopy, and scanning tunneling microscopy (STM) are described. The interpretation is assisted by density functional theory (DFT) calculations.

Citing Articles

Cadmium passivation induced negative differential resistance in cove edge graphene nanoribbon device.

Kharwar S, Gity F, Hurley P, Ansari L Sci Rep. 2025; 15(1):8598.

PMID: 40074794 PMC: 11903861. DOI: 10.1038/s41598-025-92735-w.


1,4-Dihydropyrrolo[3,2-]pyrroles with Two Embedded Heptagons via Alkyne Annulation.

Sanil G, Dobrzycki L, Cyranski M, Jacquemin D, Chaladaj W, Gryko D J Org Chem. 2024; 90(1):614-622.

PMID: 39741379 PMC: 11731285. DOI: 10.1021/acs.joc.4c02538.


Wavy Graphene Nanoribbons Containing Periodic Eight-Membered Rings for Light-Emitting Electrochemical Cells.

Obermann S, Zhou X, Guerrero-Leon L, Serra G, Bockmann S, Fu Y Angew Chem Int Ed Engl. 2024; 63(50):e202415670.

PMID: 39268646 PMC: 11609969. DOI: 10.1002/anie.202415670.


Several distance and degree-based molecular structural attributes of cove-edged graphene nanoribbons.

Prabhu S, Murugan G, Imran M, Arockiaraj M, Alam M, Ghani M Heliyon. 2024; 10(15):e34944.

PMID: 39170540 PMC: 11336347. DOI: 10.1016/j.heliyon.2024.e34944.


Helically twisted nanoribbons stereospecific annulative π-extension reaction employing [7]helicene as a molecular wrench.

Swain A, Radacki K, Braunschweig H, Ravat P Chem Sci. 2024; 15(30):11737-11747.

PMID: 39092091 PMC: 11290328. DOI: 10.1039/d4sc01814a.


References
1.
Wang X, Ouyang Y, Li X, Wang H, Guo J, Dai H . Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett. 2008; 100(20):206803. DOI: 10.1103/PhysRevLett.100.206803. View

2.
Chen L, Hernandez Y, Feng X, Mullen K . From nanographene and graphene nanoribbons to graphene sheets: chemical synthesis. Angew Chem Int Ed Engl. 2012; 51(31):7640-54. DOI: 10.1002/anie.201201084. View

3.
Jiao L, Wang X, Diankov G, Wang H, Dai H . Facile synthesis of high-quality graphene nanoribbons. Nat Nanotechnol. 2010; 5(5):321-5. DOI: 10.1038/nnano.2010.54. View

4.
Chen Y, de Oteyza D, Pedramrazi Z, Chen C, Fischer F, Crommie M . Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano. 2013; 7(7):6123-8. DOI: 10.1021/nn401948e. View

5.
Zhong Y, Kumar B, Oh S, Trinh M, Wu Y, Elbert K . Helical ribbons for molecular electronics. J Am Chem Soc. 2014; 136(22):8122-30. DOI: 10.1021/ja503533y. View