» Articles » PMID: 25867848

Rapid Reverse Genetic Screening Using CRISPR in Zebrafish

Overview
Journal Nat Methods
Date 2015 Apr 14
PMID 25867848
Citations 195
Authors
Affiliations
Soon will be listed here.
Abstract

Identifying genes involved in biological processes is critical for understanding the molecular building blocks of life. We used engineered CRISPR (clustered regularly interspaced short palindromic repeats) to efficiently mutate specific loci in zebrafish (Danio rerio) and screen for genes involved in vertebrate biological processes. We found that increasing CRISPR efficiency by injecting optimized amounts of Cas9-encoding mRNA and multiplexing single guide RNAs (sgRNAs) allowed for phenocopy of known mutants across many phenotypes in embryos. We performed a proof-of-concept screen in which we used intersecting, multiplexed pool injections to examine 48 loci and identified two new genes involved in electrical-synapse formation. By deep sequencing target loci, we found that 90% of the genes were effectively screened. We conclude that CRISPR can be used as a powerful reverse genetic screening strategy in vivo in a vertebrate system.

Citing Articles

An in vivo CRISPR screen in chick embryos reveals a role for MLLT3 in specification of neural cells from the caudal epiblast.

Libby A, Rito T, Radley A, Briscoe J Development. 2025; 152(3).

PMID: 39804120 PMC: 11883246. DOI: 10.1242/dev.204591.


Electrical synapse molecular diversity revealed by proximity-based proteomic discovery.

Michel J, Martin E, Crow W, Kissinger J, Lukowicz-Bedford R, Horrocks M bioRxiv. 2024; .

PMID: 39605535 PMC: 11601576. DOI: 10.1101/2024.11.22.624763.


Gene expansions contributing to human brain evolution.

Soto D, Uribe-Salazar J, Kaya G, Valdarrago R, Sekar A, Haghani N bioRxiv. 2024; .

PMID: 39386494 PMC: 11463660. DOI: 10.1101/2024.09.26.615256.


Carboxy-terminal polyglutamylation regulates signaling and phase separation of the Dishevelled protein.

Kravec M, Sedo O, Nedvedova J, Micka M, Sulcova M, Zezula N EMBO J. 2024; 43(22):5635-5666.

PMID: 39349846 PMC: 11574253. DOI: 10.1038/s44318-024-00254-7.


Knockout, Knockdown, and the Schrödinger Paradox: Genetic Immunity to Phenotypic Recapitulation in Zebrafish.

Arana A, Sanchez L Genes (Basel). 2024; 15(9).

PMID: 39336755 PMC: 11431394. DOI: 10.3390/genes15091164.


References
1.
Howe K, Clark M, Torroja C, Torrance J, Berthelot C, Muffato M . The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013; 496(7446):498-503. PMC: 3703927. DOI: 10.1038/nature12111. View

2.
Bassett A, Tibbit C, Ponting C, Liu J . Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 2013; 4(1):220-8. PMC: 3714591. DOI: 10.1016/j.celrep.2013.06.020. View

3.
Xiao A, Wang Z, Hu Y, Wu Y, Luo Z, Yang Z . Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish. Nucleic Acids Res. 2013; 41(14):e141. PMC: 3737551. DOI: 10.1093/nar/gkt464. View

4.
Jao L, Wente S, Chen W . Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc Natl Acad Sci U S A. 2013; 110(34):13904-9. PMC: 3752207. DOI: 10.1073/pnas.1308335110. View

5.
Rash J, Curti S, Vanderpool K, Kamasawa N, Nannapaneni S, Palacios-Prado N . Molecular and functional asymmetry at a vertebrate electrical synapse. Neuron. 2013; 79(5):957-69. PMC: 4020187. DOI: 10.1016/j.neuron.2013.06.037. View