» Articles » PMID: 25852315

Nanosphere-in-a-nanoegg: Damping the High-order Modes Induced by Symmetry Breaking

Overview
Publisher Springer
Specialty Biotechnology
Date 2015 Apr 9
PMID 25852315
Citations 4
Authors
Affiliations
Soon will be listed here.
Abstract

We study the optical properties of the nanosphere-in-a-nanoegg structure (NSNE) by the three-dimensional finite difference time domain method. We demonstrate the suppression of the high-order plasmon modes in NSNE, which is induced by the plasmon interaction between the inner nanosphere and the outer nanoegg shell. A two-layer plasmon hybridization model is presented to explain this mechanism. The results we showed for plasmon mode suppression would be important to the design of the metal plasmonic devices. In addition, due to high tunable plasmon resonances in the near-infrared region (700 to 1,300 nm) with sub-100-nm size, NSNE can serve as a good substitute for the Au-silica-Au multilayer nanoshells in biological applications. Furthermore, compared with the Au-silica-Au nanoshells, NSNE has the advantage that the strong field enhancement can be achieved at the outer surface of the Au shell.

Citing Articles

Enhanced Confinement of Terahertz Surface Plasmon Polaritons in Bulk Dirac Semimetal-Insulator-Metal Waveguides.

Su Y, Lin Q, Zhai X, Wang L Nanoscale Res Lett. 2018; 13(1):308.

PMID: 30284110 PMC: 6170250. DOI: 10.1186/s11671-018-2686-z.


Generating and Manipulating High Quality Factors of Fano Resonance in Nanoring Resonator by Stacking a Half Nanoring.

Qin M, Wang L, Zhai X, Chen D, Xia S Nanoscale Res Lett. 2017; 12(1):578.

PMID: 29098493 PMC: 5668229. DOI: 10.1186/s11671-017-2357-5.


Selective synthesis of FeOAu Ag nanomaterials and their potential applications in catalysis and nanomedicine.

Fodjo E, Gabriel K, Serge B, Li D, Kong C, Trokourey A Chem Cent J. 2017; 11(1):58.

PMID: 29086848 PMC: 5482793. DOI: 10.1186/s13065-017-0288-y.


Near- and Far-Field Optical Response of Eccentric Nanoshells.

Pena-Rodriguez O, Diaz-Nunez P, Rodriguez-Iglesias V, Montano-Priede L, Rivera A, Pal U Nanoscale Res Lett. 2017; 12(1):16.

PMID: 28058650 PMC: 5216003. DOI: 10.1186/s11671-016-1796-8.

References
1.
Hao F, Sonnefraud Y, Van Dorpe P, Maier S, Halas N, Nordlander P . Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett. 2008; 8(11):3983-8. DOI: 10.1021/nl802509r. View

2.
Mayer K, Hafner J . Localized surface plasmon resonance sensors. Chem Rev. 2011; 111(6):3828-57. DOI: 10.1021/cr100313v. View

3.
Liaw J, Chen H, Kuo M . Plasmonic Fano resonance and dip of Au-SiO2-Au nanomatryoshka. Nanoscale Res Lett. 2013; 8(1):468. PMC: 3829662. DOI: 10.1186/1556-276X-8-468. View

4.
Uchida S, Zettsu N, Endo K, Yamamura K . Fundamental research on the label-free detection of protein adsorption using near-infrared light-responsive plasmonic metal nanoshell arrays with controlled nanogap. Nanoscale Res Lett. 2013; 8(1):274. PMC: 3848557. DOI: 10.1186/1556-276X-8-274. View

5.
Smith A, Mancini M, Nie S . Bioimaging: second window for in vivo imaging. Nat Nanotechnol. 2009; 4(11):710-1. PMC: 2862008. DOI: 10.1038/nnano.2009.326. View