» Articles » PMID: 25849493

Large-volume Protein Crystal Growth for Neutron Macromolecular Crystallography

Overview
Specialty Chemistry
Date 2015 Apr 8
PMID 25849493
Citations 14
Authors
Affiliations
Soon will be listed here.
Abstract

Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

Citing Articles

Counter-diffusion studies of human transthyretin: the growth of high-quality crystals for X-ray and neutron crystallography.

DeAth C, Oliva M, Moulin M, Blakeley M, Haertlein M, Mitchell E J Appl Crystallogr. 2025; 58(Pt 1):107-118.

PMID: 39917185 PMC: 11798515. DOI: 10.1107/S1600576724011191.


Improved joint X-ray and neutron refinement procedure in Phenix.

Liebschner D, Afonine P, Poon B, Moriarty N, Adams P Acta Crystallogr D Struct Biol. 2023; 79(Pt 12):1079-1093.

PMID: 37942718 PMC: 10833352. DOI: 10.1107/S2059798323008914.


Equilibration of precipitants in a counter-diffusion apparatus for protein crystallization.

Kober U, Ogbuoji E, Hutchinson J, Mueser T, Schall C J Appl Crystallogr. 2023; 56(Pt 4):1057-1065.

PMID: 37555216 PMC: 10405592. DOI: 10.1107/S1600576723004958.


Perfect Crystals: microgravity capillary counterdiffusion crystallization of human manganese superoxide dismutase for neutron crystallography.

Lutz W, Azadmanesh J, Lovelace J, Kolar C, Coates L, Weiss K NPJ Microgravity. 2023; 9(1):39.

PMID: 37270576 PMC: 10238240. DOI: 10.1038/s41526-023-00288-x.


The mechanisms of catalysis and ligand binding for the SARS-CoV-2 NSP3 macrodomain from neutron and x-ray diffraction at room temperature.

Correy G, Kneller D, Phillips G, Pant S, Russi S, Cohen A Sci Adv. 2022; 8(21):eabo5083.

PMID: 35622909 PMC: 9140965. DOI: 10.1126/sciadv.abo5083.


References
1.
Blakeley M, Langan P, Niimura N, Podjarny A . Neutron crystallography: opportunities, challenges, and limitations. Curr Opin Struct Biol. 2008; 18(5):593-600. PMC: 2586829. DOI: 10.1016/j.sbi.2008.06.009. View

2.
Asherie N . Protein crystallization and phase diagrams. Methods. 2004; 34(3):266-72. DOI: 10.1016/j.ymeth.2004.03.028. View

3.
Delucas L, Moore K, Long M . Protein crystal growth and the International Space Station. Gravit Space Biol Bull. 2001; 12(2):39-45. View

4.
Teixeira S, Ankner J, Bellissent-Funel M, Bewley R, Blakeley M, Coates L . New sources and instrumentation for neutrons in biology. Chem Phys. 2009; 345(2-3):133-151. PMC: 2614686. DOI: 10.1016/j.chemphys.2008.02.030. View

5.
Hope H . Cryocrystallography of biological macromolecules: a generally applicable method. Acta Crystallogr B. 1988; 44 ( Pt 1):22-6. DOI: 10.1107/s0108768187008632. View