» Articles » PMID: 25847964

AMA1-deficient Toxoplasma Gondii Parasites Transiently Colonize Mice and Trigger an Innate Immune Response That Leads to Long-lasting Protective Immunity

Overview
Journal Infect Immun
Date 2015 Apr 8
PMID 25847964
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The apical membrane antigen 1 (AMA1) protein was believed to be essential for the perpetuation of two Apicomplexa parasite genera, Plasmodium and Toxoplasma, until we genetically engineered viable parasites lacking AMA1. The reduction in invasiveness of the Toxoplasma gondii RH-AMA1 knockout (RH-AMA1(KO)) tachyzoite population, in vitro, raised key questions about the outcome associated with these tachyzoites once inoculated in the peritoneal cavity of mice. In this study, we used AMNIS technology to simultaneously quantify and image the parasitic process driven by AMA1(KO) tachyzoites. We report their ability to colonize and multiply in mesothelial cells and in both resident and recruited leukocytes. While the RH-AMA1(KO) population amplification is rapidly lethal in immunocompromised mice, it is controlled in immunocompetent hosts, where immune cells in combination sense parasites and secrete proinflammatory cytokines. This innate response further leads to a long-lasting status immunoprotective against a secondary challenge by high inocula of the homologous type I or a distinct type II T. gondii genotypes. While AMA1 is definitively not an essential protein for tachyzoite entry and multiplication in host cells, it clearly assists the expansion of parasite population in vivo.

Citing Articles

Establishment and application of an iELISA detection method for measuring apical membrane antigen 1 (AMA1) antibodies of Toxoplasma gondii in cats.

Gao Y, Shen Y, Fan J, Ding H, Zheng B, Yu H BMC Vet Res. 2023; 19(1):229.

PMID: 37924072 PMC: 10623812. DOI: 10.1186/s12917-023-03775-1.


Invasion of bradyzoites: Molecular dissection of the moving junction proteins and effective vaccination targets.

Najm R, Grilo Ruivo M, Penarete-Vargas D, Hamie M, Mouveaux T, Gissot M Proc Natl Acad Sci U S A. 2023; 120(5):e2219533120.

PMID: 36693095 PMC: 9945962. DOI: 10.1073/pnas.2219533120.


Deletion of Rhoptry Protein 38 (PruΔ) as a Vaccine Candidate for Toxoplasmosis in a Murine Model.

Wu Y, Zhou Z, Ying Z, Xu Y, Liu J, Liu Q Biomedicines. 2022; 10(6).

PMID: 35740356 PMC: 9220005. DOI: 10.3390/biomedicines10061336.


Advances in Vaccines: Current Strategies and Challenges for Vaccine Development.

Chu K, Quan F Vaccines (Basel). 2021; 9(5).

PMID: 33919060 PMC: 8143161. DOI: 10.3390/vaccines9050413.


:Δ Live Attenuated Strain Induces Protective Immunity Against Acute and Chronic Toxoplasmosis.

Li J, Galon E, Guo H, Liu M, Li Y, Ji S Front Microbiol. 2021; 12:619335.

PMID: 33776955 PMC: 7991750. DOI: 10.3389/fmicb.2021.619335.


References
1.
Innes E, Bartley P, Maley S, Katzer F, Buxton D . Veterinary vaccines against Toxoplasma gondii. Mem Inst Oswaldo Cruz. 2009; 104(2):246-51. DOI: 10.1590/s0074-02762009000200018. View

2.
Mordue D, Sibley L . A novel population of Gr-1+-activated macrophages induced during acute toxoplasmosis. J Leukoc Biol. 2003; 74(6):1015-25. DOI: 10.1189/jlb.0403164. View

3.
Reischl U, Bretagne S, Kruger D, Ernault P, Costa J . Comparison of two DNA targets for the diagnosis of Toxoplasmosis by real-time PCR using fluorescence resonance energy transfer hybridization probes. BMC Infect Dis. 2003; 3:7. PMC: 156600. DOI: 10.1186/1471-2334-3-7. View

4.
Mutsaers S, Wilkosz S . Structure and function of mesothelial cells. Cancer Treat Res. 2007; 134:1-19. DOI: 10.1007/978-0-387-48993-3_1. View

5.
Cannella D, Brenier-Pinchart M, Braun L, van Rooyen J, Bougdour A, Bastien O . miR-146a and miR-155 delineate a MicroRNA fingerprint associated with Toxoplasma persistence in the host brain. Cell Rep. 2014; 6(5):928-37. PMC: 4476055. DOI: 10.1016/j.celrep.2014.02.002. View