» Articles » PMID: 25843647

In Vivo Tumor Vasculature Targeting of CuS@MSN Based Theranostic Nanomedicine

Overview
Journal ACS Nano
Specialty Biotechnology
Date 2015 Apr 7
PMID 25843647
Citations 48
Authors
Affiliations
Soon will be listed here.
Abstract

Actively targeted theranostic nanomedicine may be the key for future personalized cancer management. Although numerous types of theranostic nanoparticles have been developed in the past decade for cancer treatment, challenges still exist in the engineering of biocompatible theranostic nanoparticles with highly specific in vivo tumor targeting capabilities. Here, we report the design, synthesis, surface engineering, and in vivo active vasculature targeting of a new category of theranostic nanoparticle for future cancer management. Water-soluble photothermally sensitive copper sulfide nanoparticles were encapsulated in biocompatible mesoporous silica shells, followed by multistep surface engineering to form the final theranostic nanoparticles. Systematic in vitro targeting, an in vivo long-term toxicity study, photothermal ablation evaluation, in vivo vasculature targeted imaging, biodistribution and histology studies were performed to fully explore the potential of as-developed new theranostic nanoparticles.

Citing Articles

Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.

Hsu Y, He Y, Zhao X, Wang F, Yang F, Zheng Y Adv Sci (Weinh). 2025; 12(9):e2409051.

PMID: 39807526 PMC: 11884568. DOI: 10.1002/advs.202409051.


Cuproptosis-based layer-by-layer silk fibroin nanoplatform-loaded PD-L1 siRNA combining photothermal and chemodynamic therapy against metastatic breast cancer.

Li Z, Cheng L, Xu X, Jia R, Zhu S, Zhang Q Mater Today Bio. 2024; 29:101298.

PMID: 39469315 PMC: 11513806. DOI: 10.1016/j.mtbio.2024.101298.


Multifunctional mesoporous silica nanoparticles for biomedical applications.

Xu B, Li S, Shi R, Liu H Signal Transduct Target Ther. 2023; 8(1):435.

PMID: 37996406 PMC: 10667354. DOI: 10.1038/s41392-023-01654-7.


Nanomedicine in cancer therapy.

Fan D, Cao Y, Cao M, Wang Y, Cao Y, Gong T Signal Transduct Target Ther. 2023; 8(1):293.

PMID: 37544972 PMC: 10404590. DOI: 10.1038/s41392-023-01536-y.


Nanoparticles labeled with gamma-emitting radioisotopes: an attractive approach for in vivo tracking using SPECT imaging.

Ahmadi M, Emzhik M, Mosayebnia M Drug Deliv Transl Res. 2023; 13(6):1546-1583.

PMID: 36811810 DOI: 10.1007/s13346-023-01291-1.


References
1.
Shen D, Yang J, Li X, Zhou L, Zhang R, Li W . Biphase stratification approach to three-dimensional dendritic biodegradable mesoporous silica nanospheres. Nano Lett. 2014; 14(2):923-32. DOI: 10.1021/nl404316v. View

2.
Zhang Y, Hong H, Nayak T, Valdovinos H, Myklejord D, Theuer C . Imaging tumor angiogenesis in breast cancer experimental lung metastasis with positron emission tomography, near-infrared fluorescence, and bioluminescence. Angiogenesis. 2013; 16(3):663-74. PMC: 3706271. DOI: 10.1007/s10456-013-9344-y. View

3.
Xie J, Lee S, Chen X . Nanoparticle-based theranostic agents. Adv Drug Deliv Rev. 2010; 62(11):1064-79. PMC: 2988080. DOI: 10.1016/j.addr.2010.07.009. View

4.
Wu W, Ichihara G, Hashimoto N, Hasegawa Y, Hayashi Y, Tada-Oikawa S . Synergistic effect of bolus exposure to zinc oxide nanoparticles on bleomycin-induced secretion of pro-fibrotic cytokines without lasting fibrotic changes in murine lungs. Int J Mol Sci. 2015; 16(1):660-76. PMC: 4307267. DOI: 10.3390/ijms16010660. View

5.
Tian Q, Tang M, Sun Y, Zou R, Chen Z, Zhu M . Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Adv Mater. 2011; 23(31):3542-7. DOI: 10.1002/adma.201101295. View