» Articles » PMID: 25792771

Our Research on Proton Pumping ATPases over Three Decades: Their Biochemistry, Molecular Biology and Cell Biology

Overview
Specialties Biology
Science
Date 2015 Mar 21
PMID 25792771
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

ATP is synthesized by F-type proton-translocating ATPases (F-ATPases) coupled with an electrochemical proton gradient established by an electron transfer chain. This mechanism is ubiquitously found in mitochondria, chloroplasts and bacteria. Vacuolar-type ATPases (V-ATPases) are found in endomembrane organelles, including lysosomes, endosomes, synaptic vesicles, etc., of animal and plant cells. These two physiologically different proton pumps exhibit similarities in subunit assembly, catalysis and the coupling mechanism from chemistry to proton transport through subunit rotation. We mostly discuss our own studies on the two proton pumps over the last three decades, including ones on purification, kinetic analysis, rotational catalysis and the diverse roles of acidic luminal organelles. The diversity of organellar proton pumps and their stochastic fluctuation are the important concepts derived recently from our studies.

Citing Articles

The emerging roles of vacuolar-type ATPase-dependent Lysosomal acidification in neurodegenerative diseases.

Song Q, Meng B, Xu H, Mao Z Transl Neurodegener. 2020; 9(1):17.

PMID: 32393395 PMC: 7212675. DOI: 10.1186/s40035-020-00196-0.


Vacuolar-type ATPase: A proton pump to lysosomal trafficking.

Futai M, Sun-Wada G, Wada Y, Matsumoto N, Nakanishi-Matsui M Proc Jpn Acad Ser B Phys Biol Sci. 2019; 95(6):261-277.

PMID: 31189779 PMC: 6751294. DOI: 10.2183/pjab.95.018.


Defective Expression of Mitochondrial, Vacuolar H-ATPase and Histone Genes in a Model of SMA.

Gao X, Xu J, Chen H, Xue D, Pan W, Zhou C Front Genet. 2019; 10:410.

PMID: 31130987 PMC: 6509145. DOI: 10.3389/fgene.2019.00410.


Dynamic mechanisms driving conformational conversions of the β and ε subunits involved in rotational catalysis of F-ATPase.

Akutsu H Proc Jpn Acad Ser B Phys Biol Sci. 2017; 93(8):630-647.

PMID: 29021512 PMC: 5743862. DOI: 10.2183/pjab.93.040.


Combining blue native polyacrylamide gel electrophoresis with liquid chromatography tandem mass spectrometry as an effective strategy for analyzing potential membrane protein complexes of Mycobacterium bovis bacillus Calmette-Guérin.

Zheng J, Wei C, Zhao L, Liu L, Leng W, Li W BMC Genomics. 2011; 12:40.

PMID: 21241518 PMC: 3032701. DOI: 10.1186/1471-2164-12-40.

References
1.
Nakanishi-Matsui M, Kashiwagi S, Hosokawa H, Cipriano D, Dunn S, Wada Y . Stochastic high-speed rotation of Escherichia coli ATP synthase F1 sector: the epsilon subunit-sensitive rotation. J Biol Chem. 2005; 281(7):4126-31. DOI: 10.1074/jbc.M510090200. View

2.
Sun-Wada G, Yamamoto A, Murata Y, Hirata T, Wada Y, Futai M . A proton pump ATPase with testis-specific E1-subunit isoform required for acrosome acidification. J Biol Chem. 2002; 277(20):18098-105. DOI: 10.1074/jbc.M111567200. View

3.
Park M, Omote H, Maeda M, Futai M . Conserved Glu-181 and Arg-182 residues of Escherichia coli H(+)-ATPase (ATP synthase) beta subunit are essential for catalysis: properties of 33 mutants between beta Glu-161 and beta Lys-201 residues. J Biochem. 1994; 116(5):1139-45. DOI: 10.1093/oxfordjournals.jbchem.a124640. View

4.
Tamura S, Wang X, Maeda M, Futai M . Gastric DNA-binding proteins recognize upstream sequence motifs of parietal cell-specific genes. Proc Natl Acad Sci U S A. 1993; 90(22):10876-80. PMC: 47881. DOI: 10.1073/pnas.90.22.10876. View

5.
Hsu S, Noumi T, Takeyama M, Maeda M, Ishibashi S, Futai M . Beta-subunit of Escherichia coli F1-ATPase. An amino acid replacement within a conserved sequence (G-X-X-X-X-G-K-T/S) of nucleotide-binding proteins. FEBS Lett. 1987; 218(2):222-6. DOI: 10.1016/0014-5793(87)81050-5. View