» Articles » PMID: 25774713

High-throughput Fluorescence Correlation Spectroscopy Enables Analysis of Proteome Dynamics in Living Cells

Overview
Journal Nat Biotechnol
Specialty Biotechnology
Date 2015 Mar 17
PMID 25774713
Citations 68
Authors
Affiliations
Soon will be listed here.
Abstract

To understand the function of cellular protein networks, spatial and temporal context is essential. Fluorescence correlation spectroscopy (FCS) is a single-molecule method to study the abundance, mobility and interactions of fluorescence-labeled biomolecules in living cells. However, manual acquisition and analysis procedures have restricted live-cell FCS to short-term experiments of a few proteins. Here, we present high-throughput (HT)-FCS, which automates screening and time-lapse acquisition of FCS data at specific subcellular locations and subsequent data analysis. We demonstrate its utility by studying the dynamics of 53 nuclear proteins. We made 60,000 measurements in 10,000 living human cells, to obtain biophysical parameters that allowed us to classify proteins according to their chromatin binding and complex formation. We also analyzed the cell-cycle-dependent dynamics of the mitotic kinase complex Aurora B/INCENP and showed how a rise in Aurora concentration triggers two-step complex formation. We expect that throughput and robustness will make HT-FCS a broadly applicable technology for characterizing protein network dynamics in cells.

Citing Articles

tttrlib: modular software for integrating fluorescence spectroscopy, imaging, and molecular modeling.

Peulen T, Hemmen K, Greife A, Webb B, Felekyan S, Sali A Bioinformatics. 2025; 41(2).

PMID: 39836627 PMC: 11796090. DOI: 10.1093/bioinformatics/btaf025.


Quantification of membrane fluidity in bacteria using TIR-FCS.

Barbotin A, Billaudeau C, Sezgin E, Carballido-Lopez R Biophys J. 2024; 123(16):2484-2495.

PMID: 38877702 PMC: 11365102. DOI: 10.1016/j.bpj.2024.06.012.


Histone ADP-ribosylation promotes resistance to PARP inhibitors by facilitating PARP1 release from DNA lesions.

Zentout S, Imburchia V, Chapuis C, Duma L, Schutzenhofer K, Prokhorova E Proc Natl Acad Sci U S A. 2024; 121(25):e2322689121.

PMID: 38865276 PMC: 11194589. DOI: 10.1073/pnas.2322689121.


Studying Macromolecular Interactions of Cellular Machines by the Combined Use of Analytical Ultracentrifugation, Light Scattering, and Fluorescence Spectroscopy Methods.

Alfonso C, Sobrinos-Sanguino M, Luque-Ortega J, Zorrilla S, Monterroso B, Nuero O Adv Exp Med Biol. 2024; 3234:89-107.

PMID: 38507202 DOI: 10.1007/978-3-031-52193-5_7.


Neural network informed photon filtering reduces fluorescence correlation spectroscopy artifacts.

Seltmann A, Seltmann A, Carravilla P, Reglinski K, Eggeling C, Waithe D Biophys J. 2024; 123(6):745-755.

PMID: 38384131 PMC: 10995453. DOI: 10.1016/j.bpj.2024.02.012.


References
1.
Beck M, Schmidt A, Malmstroem J, Claassen M, Ori A, Szymborska A . The quantitative proteome of a human cell line. Mol Syst Biol. 2011; 7:549. PMC: 3261713. DOI: 10.1038/msb.2011.82. View

2.
Sankaran J, Shi X, Ho L, Stelzer E, Wohland T . ImFCS: a software for imaging FCS data analysis and visualization. Opt Express. 2010; 18(25):25468-81. DOI: 10.1364/OE.18.025468. View

3.
Mahen R, Koch B, Wachsmuth M, Politi A, Perez-Gonzalez A, Mergenthaler J . Comparative assessment of fluorescent transgene methods for quantitative imaging in human cells. Mol Biol Cell. 2014; 25(22):3610-8. PMC: 4230620. DOI: 10.1091/mbc.E14-06-1091. View

4.
Wachsmuth M, Waldeck W, Langowski J . Anomalous diffusion of fluorescent probes inside living cell nuclei investigated by spatially-resolved fluorescence correlation spectroscopy. J Mol Biol. 2000; 298(4):677-89. DOI: 10.1006/jmbi.2000.3692. View

5.
Baum M, Erdel F, Wachsmuth M, Rippe K . Retrieving the intracellular topology from multi-scale protein mobility mapping in living cells. Nat Commun. 2014; 5:4494. PMC: 4124875. DOI: 10.1038/ncomms5494. View