» Articles » PMID: 25755733

Adiponectin Upregulates ABCA1 Expression Through Liver X Receptor Alpha Signaling Pathway in RAW 264.7 Macrophages

Overview
Specialty Pathology
Date 2015 Mar 11
PMID 25755733
Citations 8
Authors
Affiliations
Soon will be listed here.
Abstract

ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and anti-atherosclerosis. Liver X receptor alpha (LXRα) can stimulate cholesterol efflux through ABCA1. It has been well known that adiponectin has cardiovascular protection. In this study, we attempted to clarify the effect of adiponectin on expression of ABCA1, and explored the role of LXRα in the regulation of ABCA1 in RAW 264.7 macrophages. Our results showed that adiponectin increased ABCA1 expression at both the mRNA and protein levels in a dose-dependent and time-dependent manner. Consequently, adiponectin promoted cholesterol efflux and decreased cholesterol content in RAW 264.7 macrophages. Moreover, adiponectin up-regulated the expression of LXRα in a dose-dependent and time-dependent manner in RAW 264.7 macrophages. LXRα small interfering RNA completely abolished the promotion effects of adiponectin. In summary, adiponectin up-regulates ABCA1 expression via the LXRα pathway in RAW 264.7 macrophages. This novel insight could prove useful for developing new treatment strategies for cardiovascular diseases.

Citing Articles

Effect of Extract on Foam Cell Formation in THP-1 Macrophages.

Moon H, Yun J Prev Nutr Food Sci. 2024; 29(3):288-300.

PMID: 39371520 PMC: 11450289. DOI: 10.3746/pnf.2024.29.3.288.


Role of Adiponectin in Cardiovascular Diseases Related to Glucose and Lipid Metabolism Disorders.

Han W, Yang S, Xiao H, Wang M, Ye J, Cao L Int J Mol Sci. 2022; 23(24).

PMID: 36555264 PMC: 9779180. DOI: 10.3390/ijms232415627.


Integrative metabolomics-genomics approach reveals key metabolic pathways and regulators of Alzheimer's disease.

Horgusluoglu E, Neff R, Song W, Wang M, Wang Q, Arnold M Alzheimers Dement. 2021; 18(6):1260-1278.

PMID: 34757660 PMC: 9085975. DOI: 10.1002/alz.12468.


Obesity-Related Changes in High-Density Lipoprotein Metabolism and Function.

Stadler J, Marsche G Int J Mol Sci. 2020; 21(23).

PMID: 33256096 PMC: 7731239. DOI: 10.3390/ijms21238985.


The roles of FGF21 in atherosclerosis pathogenesis.

Tabari F, Karimian A, Parsian H, Rameshknia V, Mahmoodpour A, Majidinia M Rev Endocr Metab Disord. 2019; 20(1):103-114.

PMID: 30879171 DOI: 10.1007/s11154-019-09488-x.


References
1.
Escola-Gil J, Rotllan N, Julve J, Blanco-Vaca F . In vivo macrophage-specific RCT and antioxidant and antiinflammatory HDL activity measurements: New tools for predicting HDL atheroprotection. Atherosclerosis. 2009; 206(2):321-7. DOI: 10.1016/j.atherosclerosis.2008.12.044. View

2.
Liang B, Wang X, Bian Y, Yang H, Liu M, Bai R . Angiotensin-(1-7) upregulates expression of adenosine triphosphate-binding cassette transporter A1 and adenosine triphosphate-binding cassette transporter G1 through the Mas receptor through the liver X receptor alpha signalling pathway in THP-1.... Clin Exp Pharmacol Physiol. 2014; 41(12):1023-30. DOI: 10.1111/1440-1681.12312. View

3.
Delvecchio C, Bilan P, Nair P, Capone J . LXR-induced reverse cholesterol transport in human airway smooth muscle is mediated exclusively by ABCA1. Am J Physiol Lung Cell Mol Physiol. 2008; 295(5):L949-57. DOI: 10.1152/ajplung.90394.2008. View

4.
Lee S, Kwak H . Role of adiponectin in metabolic and cardiovascular disease. J Exerc Rehabil. 2014; 10(2):54-9. PMC: 4025550. DOI: 10.12965/jer.140100. View

5.
Rosenson R, Brewer Jr H, Davidson W, Fayad Z, Fuster V, Goldstein J . Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012; 125(15):1905-19. PMC: 4159082. DOI: 10.1161/CIRCULATIONAHA.111.066589. View