» Articles » PMID: 25745023

Avoiding the Ends: Internal Epitope Tagging of Proteins Using Transposon Tn7

Overview
Journal Genetics
Specialty Genetics
Date 2015 Mar 7
PMID 25745023
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Peptide tags fused to proteins are used in a variety of applications, including as affinity tags for purification, epitope tags for immunodetection, or fluorescent protein tags for visualization. However, the peptide tags can disrupt the target protein function. When function is disrupted by fusing a peptide to either the N or C terminus of the protein of interest, identifying alternative ways to create functional tagged fusion proteins can be difficult. Here, we describe a method to introduce protein tags internal to the coding sequence of a target protein. The method employs in vitro Tn7-transposon mutagenesis of plasmids for random introduction of the tag, followed by subsequent Gateway cloning steps to isolate alleles with mutations in the coding sequence of the target gene. The Tn7-epitope cassette is designed such that essentially all of the transposon is removed through restriction enzyme digestion, leaving only the protein tag at diverse sites internal to the ORF. We describe the use of this system to generate a panel of internally epitope-tagged versions of the Saccharomyces cerevisiae GPI-linked membrane protein Dcw1 and the Candida glabrata transcriptional regulator Sir3. This internal protein tagging system is, in principle, adaptable to tag proteins in any organism for which Gateway-adapted expression vectors exist.

Citing Articles

LncRNA-encoded peptides in cancer.

Zhang Y J Hematol Oncol. 2024; 17(1):66.

PMID: 39135098 PMC: 11320871. DOI: 10.1186/s13045-024-01591-0.


EpicTope: narrating protein sequence features to identify non-disruptive epitope tagging sites.

Zinski J, Chung H, Joshi P, Warrick F, Berg B, Glova G bioRxiv. 2024; .

PMID: 38559275 PMC: 10979891. DOI: 10.1101/2024.03.03.583232.


Solid-Phase Cell-Free Protein Synthesis and Its Applications in Biotechnology.

Sanchez-Costa M, Lopez-Gallego F Adv Biochem Eng Biotechnol. 2023; 185:21-46.

PMID: 37306703 DOI: 10.1007/10_2023_226.


The Emerging Role of uORF-Encoded uPeptides and HLA uLigands in Cellular and Tumor Biology.

Jurgens L, Wethmar K Cancers (Basel). 2022; 14(24).

PMID: 36551517 PMC: 9776223. DOI: 10.3390/cancers14246031.


Small open reading frames in plant research: from prediction to functional characterization.

Ong S, Tan B, Al-Idrus A, Teo C 3 Biotech. 2022; 12(3):76.

PMID: 35251879 PMC: 8873315. DOI: 10.1007/s13205-022-03147-w.


References
1.
Devine S, Boeke J . Efficient integration of artificial transposons into plasmid targets in vitro: a useful tool for DNA mapping, sequencing and genetic analysis. Nucleic Acids Res. 1994; 22(18):3765-72. PMC: 308360. DOI: 10.1093/nar/22.18.3765. View

2.
Khmelinskii A, Meurer M, Duishoev N, Delhomme N, Knop M . Seamless gene tagging by endonuclease-driven homologous recombination. PLoS One. 2011; 6(8):e23794. PMC: 3161820. DOI: 10.1371/journal.pone.0023794. View

3.
Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I . Genome evolution in yeasts. Nature. 2004; 430(6995):35-44. DOI: 10.1038/nature02579. View

4.
Zordan R, Ren Y, Pan S, Rotondo G, De Las Penas A, Iluore J . Expression plasmids for use in Candida glabrata. G3 (Bethesda). 2013; 3(10):1675-86. PMC: 3789792. DOI: 10.1534/g3.113.006908. View

5.
Winzeler E, Shoemaker D, Astromoff A, Liang H, Anderson K, Andre B . Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science. 1999; 285(5429):901-6. DOI: 10.1126/science.285.5429.901. View