» Articles » PMID: 25732258

Dimeric Chlorite Dismutase from the Nitrogen-fixing Cyanobacterium Cyanothece Sp. PCC7425

Abstract

It is demonstrated that cyanobacteria (both azotrophic and non-azotrophic) contain heme b oxidoreductases that can convert chlorite to chloride and molecular oxygen (incorrectly denominated chlorite 'dismutase', Cld). Beside the water-splitting manganese complex of photosystem II, this metalloenzyme is the second known enzyme that catalyses the formation of a covalent oxygen-oxygen bond. All cyanobacterial Clds have a truncated N-terminus and are dimeric (i.e. clade 2) proteins. As model protein, Cld from Cyanothece sp. PCC7425 (CCld) was recombinantly produced in Escherichia coli and shown to efficiently degrade chlorite with an activity optimum at pH 5.0 [kcat 1144 ± 23.8 s(-1), KM 162 ± 10.0 μM, catalytic efficiency (7.1 ± 0.6) × 10(6) M(-1) s(-1)]. The resting ferric high-spin axially symmetric heme enzyme has a standard reduction potential of the Fe(III)/Fe(II) couple of -126 ± 1.9 mV at pH 7.0. Cyanide mediates the formation of a low-spin complex with k(on)  = (1.6 ± 0.1) × 10(5) M(-1) s(-1) and k(off) = 1.4 ± 2.9 s(-1) (KD ∼ 8.6 μM). Both, thermal and chemical unfolding follows a non-two-state unfolding pathway with the first transition being related to the release of the prosthetic group. The obtained data are discussed with respect to known structure-function relationships of Clds. We ask for the physiological substrate and putative function of these O2 -producing proteins in (nitrogen-fixing) cyanobacteria.

Citing Articles

Compound I Formation and Reactivity in Dimeric Chlorite Dismutase: Impact of pH and the Dynamics of the Catalytic Arginine.

Schmidt D, Falb N, Serra I, Bellei M, Pfanzagl V, Hofbauer S Biochemistry. 2023; 62(3):835-850.

PMID: 36706455 PMC: 9910045. DOI: 10.1021/acs.biochem.2c00696.


Chlorine redox chemistry is widespread in microbiology.

Barnum T, Coates J ISME J. 2022; 17(1):70-83.

PMID: 36202926 PMC: 9751292. DOI: 10.1038/s41396-022-01317-5.


Roles of High-valent Hemes and pH Dependence in Halite Decomposition Catalyzed by Chlorite Dismutase from .

Geeraerts Z, Stiller O, Lukat-Rodgers G, Rodgers K ACS Catal. 2022; 12(14):8641-8657.

PMID: 35903520 PMC: 9328492. DOI: 10.1021/acscatal.2c01428.


Arresting the Catalytic Arginine in Chlorite Dismutases: Impact on Heme Coordination, Thermal Stability, and Catalysis.

Schmidt D, Serra I, Mlynek G, Pfanzagl V, Hofbauer S, Furtmuller P Biochemistry. 2021; 60(8):621-634.

PMID: 33586945 PMC: 7931450. DOI: 10.1021/acs.biochem.0c00910.


Understanding molecular enzymology of porphyrin-binding α + β barrel proteins - One fold, multiple functions.

Hofbauer S, Pfanzagl V, Michlits H, Schmidt D, Obinger C, Furtmuller P Biochim Biophys Acta Proteins Proteom. 2020; 1869(1):140536.

PMID: 32891739 PMC: 7611857. DOI: 10.1016/j.bbapap.2020.140536.


References
1.
Dong S, Niu J, Cotton T . Ultraviolet/visible spectroelectrochemistry of redox proteins. Methods Enzymol. 1995; 246:701-32. DOI: 10.1016/0076-6879(95)46030-6. View

2.
Bernroitner M, Zamocky M, Furtmuller P, Peschek G, Obinger C . Occurrence, phylogeny, structure, and function of catalases and peroxidases in cyanobacteria. J Exp Bot. 2009; 60(2):423-40. DOI: 10.1093/jxb/ern309. View

3.
Doerge D, Divi R, Churchwell M . Identification of the colored guaiacol oxidation product produced by peroxidases. Anal Biochem. 1997; 250(1):10-7. DOI: 10.1006/abio.1997.2191. View

4.
Dailey T, Boynton T, Albetel A, Gerdes S, Johnson M, Dailey H . Discovery and Characterization of HemQ: an essential heme biosynthetic pathway component. J Biol Chem. 2010; 285(34):25978-86. PMC: 2923992. DOI: 10.1074/jbc.M110.142604. View

5.
Paumann M, Regelsberger G, Obinger C, Peschek G . The bioenergetic role of dioxygen and the terminal oxidase(s) in cyanobacteria. Biochim Biophys Acta. 2005; 1707(2-3):231-53. DOI: 10.1016/j.bbabio.2004.12.007. View