» Articles » PMID: 25719671

N(6)-methyladenosine-dependent RNA Structural Switches Regulate RNA-protein Interactions

Overview
Journal Nature
Specialty Science
Date 2015 Feb 27
PMID 25719671
Citations 1096
Authors
Affiliations
Soon will be listed here.
Abstract

RNA-binding proteins control many aspects of cellular biology through binding single-stranded RNA binding motifs (RBMs). However, RBMs can be buried within their local RNA structures, thus inhibiting RNA-protein interactions. N(6)-methyladenosine (m(6)A), the most abundant and dynamic internal modification in eukaryotic messenger RNA, can be selectively recognized by the YTHDF2 protein to affect the stability of cytoplasmic mRNAs, but how m(6)A achieves its wide-ranging physiological role needs further exploration. Here we show in human cells that m(6)A controls the RNA-structure-dependent accessibility of RBMs to affect RNA-protein interactions for biological regulation; we term this mechanism 'the m(6)A-switch'. We found that m(6)A alters the local structure in mRNA and long non-coding RNA (lncRNA) to facilitate binding of heterogeneous nuclear ribonucleoprotein C (HNRNPC), an abundant nuclear RNA-binding protein responsible for pre-mRNA processing. Combining photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation (PAR-CLIP) and anti-m(6)A immunoprecipitation (MeRIP) approaches enabled us to identify 39,060 m(6)A-switches among HNRNPC-binding sites; and global m(6)A reduction decreased HNRNPC binding at 2,798 high-confidence m(6)A-switches. We determined that these m(6)A-switch-regulated HNRNPC-binding activities affect the abundance as well as alternative splicing of target mRNAs, demonstrating the regulatory role of m(6)A-switches on gene expression and RNA maturation. Our results illustrate how RNA-binding proteins gain regulated access to their RBMs through m(6)A-dependent RNA structural remodelling, and provide a new direction for investigating RNA-modification-coded cellular biology.

Citing Articles

METTL3-mA-mediated TGF-β signaling promotes Fuchs endothelial corneal dystrophy via regulating corneal endothelial-to-mesenchymal transition.

Qiu J, Zhang X, Shi Q, Yang Y, Zhou R, Xiang J Cell Death Discov. 2025; 11(1):104.

PMID: 40089501 DOI: 10.1038/s41420-025-02384-1.


NERD-dependent mA modification of the nascent FLC transcript regulates flowering time in Arabidopsis.

Shao Y, Ma J, Zhang S, Xu Y, Yu H Nat Plants. 2025; .

PMID: 40087542 DOI: 10.1038/s41477-025-01945-7.


The Role of MA Modification in Autoimmunity: Emerging Mechanisms and Therapeutic Implications.

Xu L, Shen T, Li Y, Wu X Clin Rev Allergy Immunol. 2025; 68(1):29.

PMID: 40085180 DOI: 10.1007/s12016-025-09041-6.


HNRNPC promotes progression of non-small cell lung cancer by maintaining TFAP2A mRNA stability.

Liao M, Li C, Yang R, Li J, Wu K, Zhang J Cancer Cell Int. 2025; 25(1):85.

PMID: 40057699 PMC: 11889907. DOI: 10.1186/s12935-025-03660-x.


Exon junction complexes regulate osteoclast-induced bone resorption by influencing the NFATc1 m6A distribution through the "shield effect".

Sun B, Yang J, Wang Z, Wang Z, Feng W, Li X Clin Transl Med. 2025; 15(3):e70266.

PMID: 40051055 PMC: 11885169. DOI: 10.1002/ctm2.70266.


References
1.
Antson A . Single-stranded-RNA binding proteins. Curr Opin Struct Biol. 2000; 10(1):87-94. DOI: 10.1016/s0959-440x(99)00054-8. View

2.
Zhao X, Yang Y, Sun B, Shi Y, Yang X, Xiao W . FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014; 24(12):1403-19. PMC: 4260349. DOI: 10.1038/cr.2014.151. View

3.
Dreyfuss G, Kim V, Kataoka N . Messenger-RNA-binding proteins and the messages they carry. Nat Rev Mol Cell Biol. 2002; 3(3):195-205. DOI: 10.1038/nrm760. View

4.
Kierzek E, Kierzek R . The thermodynamic stability of RNA duplexes and hairpins containing N6-alkyladenosines and 2-methylthio-N6-alkyladenosines. Nucleic Acids Res. 2003; 31(15):4472-80. PMC: 169893. DOI: 10.1093/nar/gkg633. View

5.
Ehresmann C, Baudin F, Mougel M, Romby P, Ebel J, Ehresmann B . Probing the structure of RNAs in solution. Nucleic Acids Res. 1987; 15(22):9109-28. PMC: 306456. DOI: 10.1093/nar/15.22.9109. View