» Articles » PMID: 25717193

Normalization and Noise Reduction for Single Cell RNA-seq Experiments

Overview
Journal Bioinformatics
Specialty Biology
Date 2015 Feb 27
PMID 25717193
Citations 54
Authors
Affiliations
Soon will be listed here.
Abstract

Unlabelled: A major roadblock towards accurate interpretation of single cell RNA-seq data is large technical noise resulted from small amount of input materials. The existing methods mainly aim to find differentially expressed genes rather than directly de-noise the single cell data. We present here a powerful but simple method to remove technical noise and explicitly compute the true gene expression levels based on spike-in ERCC molecules.

Availability And Implementation: The software is implemented by R and the download version is available at http://wanglab.ucsd.edu/star/GRM.

Contact: wei-wang@ucsd.edu

Supplementary Information: Supplementary data are available at Bioinformatics online.

Citing Articles

Advancements in single-cell RNA sequencing and spatial transcriptomics: transforming biomedical research.

Molla Desta G, Birhanu A Acta Biochim Pol. 2025; 72:13922.

PMID: 39980637 PMC: 11835515. DOI: 10.3389/abp.2025.13922.


Single cell RNA sequencing improves the next generation of approaches to AML treatment: challenges and perspectives.

Khosroabadi Z, Azaryar S, Dianat-Moghadam H, Amoozgar Z, Sharifi M Mol Med. 2025; 31(1):33.

PMID: 39885388 PMC: 11783831. DOI: 10.1186/s10020-025-01085-w.


Single-cell transcriptomics: a new frontier in plant biotechnology research.

Singh S, Praveen A, Dudha N, Sharma V, Bhadrecha P Plant Cell Rep. 2024; 43(12):294.

PMID: 39585480 DOI: 10.1007/s00299-024-03383-9.


Single-cell omics: experimental workflow, data analyses and applications.

Sun F, Li H, Sun D, Fu S, Gu L, Shao X Sci China Life Sci. 2024; 68(1):5-102.

PMID: 39060615 DOI: 10.1007/s11427-023-2561-0.


Data normalization for addressing the challenges in the analysis of single-cell transcriptomic datasets.

Cuevas-Diaz Duran R, Wei H, Wu J BMC Genomics. 2024; 25(1):444.

PMID: 38711017 PMC: 11073985. DOI: 10.1186/s12864-024-10364-5.


References
1.
Bullard J, Purdom E, Hansen K, Dudoit S . Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinformatics. 2010; 11:94. PMC: 2838869. DOI: 10.1186/1471-2105-11-94. View

2.
Robinson M, Oshlack A . A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010; 11(3):R25. PMC: 2864565. DOI: 10.1186/gb-2010-11-3-r25. View

3.
Tu Q, Cameron R, Worley K, Gibbs R, Davidson E . Gene structure in the sea urchin Strongylocentrotus purpuratus based on transcriptome analysis. Genome Res. 2012; 22(10):2079-87. PMC: 3460201. DOI: 10.1101/gr.139170.112. View

4.
Brennecke P, Anders S, Kim J, Kolodziejczyk A, Zhang X, Proserpio V . Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods. 2013; 10(11):1093-5. DOI: 10.1038/nmeth.2645. View

5.
Jaitin D, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I . Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014; 343(6172):776-9. PMC: 4412462. DOI: 10.1126/science.1247651. View