» Articles » PMID: 25704094

Higher-level Phylogeny of Paraneopteran Insects Inferred from Mitochondrial Genome Sequences

Overview
Journal Sci Rep
Specialty Science
Date 2015 Feb 24
PMID 25704094
Citations 84
Authors
Affiliations
Soon will be listed here.
Abstract

Mitochondrial (mt) genome data have been proven to be informative for animal phylogenetic studies but may also suffer from systematic errors, due to the effects of accelerated substitution rate and compositional heterogeneity. We analyzed the mt genomes of 25 insect species from the four paraneopteran orders, aiming to better understand how accelerated substitution rate and compositional heterogeneity affect the inferences of the higher-level phylogeny of this diverse group of hemimetabolous insects. We found substantial heterogeneity in base composition and contrasting rates in nucleotide substitution among these paraneopteran insects, which complicate the inference of higher-level phylogeny. The phylogenies inferred with concatenated sequences of mt genes using maximum likelihood and Bayesian methods and homogeneous models failed to recover Psocodea and Hemiptera as monophyletic groups but grouped, instead, the taxa that had accelerated substitution rates together, including Sternorrhyncha (a suborder of Hemiptera), Thysanoptera, Phthiraptera and Liposcelididae (a family of Psocoptera). Bayesian inference with nucleotide sequences and heterogeneous models (CAT and CAT + GTR), however, recovered Psocodea, Thysanoptera and Hemiptera each as a monophyletic group. Within Psocodea, Liposcelididae is more closely related to Phthiraptera than to other species of Psocoptera. Furthermore, Thysanoptera was recovered as the sister group to Hemiptera.

Citing Articles

Evolutionary Analysis of Hypoderma Pantholopsum in Tibetan Antelopes on the Qinghai-Tibetan Plateau.

Zhang F, Zhang H, Li Z, Meng R, Ye P, Fu Y Acta Parasitol. 2025; 70(1):9.

PMID: 39775977 DOI: 10.1007/s11686-024-00954-4.


Mitochondrial Genome Comparison and Phylogenetic Variety of Four Morphologically Similar Bamboo Pests.

Ying Y, Wang W, Li Y, Li Z, Zhao X, Zhang S Ecol Evol. 2024; 14(11):e70588.

PMID: 39568765 PMC: 11578632. DOI: 10.1002/ece3.70588.


Codon Usage Pattern and its Influencing Factors for Mitochondrial CO Genes Among Different Subfamilies of Cerambycidae.

Zhang Y, Yu H, Dayananda B, Yu T Biochem Genet. 2024; .

PMID: 39543004 DOI: 10.1007/s10528-024-10967-3.


Mitogenome-Based Phylogeny with Divergence Time Estimates Revealed the Presence of Cryptic Species within Heptageniidae (Insecta, Ephemeroptera).

Guo Z, Shen C, Cheng H, Chen Y, Wu H, Storey K Insects. 2024; 15(10).

PMID: 39452321 PMC: 11509038. DOI: 10.3390/insects15100745.


Phylogeny and evolution of hemipteran insects based on expanded genomic and transcriptomic data.

Song N, Wang M, Huang W, Wu Z, Shao R, Yin X BMC Biol. 2024; 22(1):190.

PMID: 39218865 PMC: 11367992. DOI: 10.1186/s12915-024-01991-1.


References
1.
Cameron S . Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 2013; 59:95-117. DOI: 10.1146/annurev-ento-011613-162007. View

2.
Yoshizawa K, Johnson K . Phylogenetic position of Phthiraptera (Insecta: Paraneoptera) and elevated rate of evolution in mitochondrial 12S and 16S rDNA. Mol Phylogenet Evol. 2003; 29(1):102-14. DOI: 10.1016/s1055-7903(03)00073-3. View

3.
Trautwein M, Wiegmann B, Beutel R, Kjer K, Yeates D . Advances in insect phylogeny at the dawn of the postgenomic era. Annu Rev Entomol. 2011; 57:449-68. DOI: 10.1146/annurev-ento-120710-100538. View

4.
Darriba D, Taboada G, Doallo R, Posada D . ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics. 2011; 27(8):1164-5. PMC: 5215816. DOI: 10.1093/bioinformatics/btr088. View

5.
Yang Z . Among-site rate variation and its impact on phylogenetic analyses. Trends Ecol Evol. 2011; 11(9):367-72. DOI: 10.1016/0169-5347(96)10041-0. View