TEFMA: Computing Thermodynamically Feasible Elementary Flux Modes in Metabolic Networks
Overview
Affiliations
Unlabelled: : Elementary flux modes (EFMs) are important structural tools for the analysis of metabolic networks. It is known that many topologically feasible EFMs are biologically irrelevant. Therefore, tools are needed to find the relevant ones. We present thermodynamic tEFM analysis (tEFMA) which uses the cellular metabolome to avoid the enumeration of thermodynamically infeasible EFMs. Specifically, given a metabolic network and a not necessarily complete metabolome, tEFMA efficiently returns the full set of thermodynamically feasible EFMs consistent with the metabolome. Compared with standard approaches, tEFMA strongly reduces the memory consumption and the overall runtime. Thus tEFMA provides a new way to analyze unbiasedly hitherto inaccessible large-scale metabolic networks.
Availability And Implementation: https://github.com/mpgerstl/tEFMA CONTACT: : christian.jungreuthmayer@boku.ac.at or juergen.zanghellini@boku.ac.at
Supplementary Information: Supplementary data are available at Bioinformatics online.
Mahout M, Carlson R, Simon L, Peres S NPJ Syst Biol Appl. 2024; 10(1):34.
PMID: 38565568 PMC: 10987626. DOI: 10.1038/s41540-024-00360-6.
On the representativeness and stability of a set of EFMs.
Guil F, Hidalgo J, Garcia J Bioinformatics. 2023; 39(6).
PMID: 37252834 PMC: 10264373. DOI: 10.1093/bioinformatics/btad356.
Beck A, Kleiner M, Garrell A Front Plant Sci. 2022; 13:910377.
PMID: 35795346 PMC: 9251461. DOI: 10.3389/fpls.2022.910377.
Muller S, Szeliova D, Zanghellini J PLoS Comput Biol. 2022; 18(2):e1009843.
PMID: 35104290 PMC: 8853647. DOI: 10.1371/journal.pcbi.1009843.
Addressing uncertainty in genome-scale metabolic model reconstruction and analysis.
Bernstein D, Sulheim S, Almaas E, Segre D Genome Biol. 2021; 22(1):64.
PMID: 33602294 PMC: 7890832. DOI: 10.1186/s13059-021-02289-z.