» Articles » PMID: 25666713

CRISPR-engineered Mosaicism Rapidly Reveals That Loss of Kcnj13 Function in Mice Mimics Human Disease Phenotypes

Overview
Journal Sci Rep
Specialty Science
Date 2015 Feb 11
PMID 25666713
Citations 63
Authors
Affiliations
Soon will be listed here.
Abstract

The era of genomics has demanded the development of more efficient and timesaving approaches to validate gene function in disease. Here, we utilized the CRISPR-Cas9 system to generate Kcnj13 mutant mice by zygote injection to verify the pathogenic role of human KCNJ13, mutations of which are thought to cause Leber congenital amaurosis (LCA), an early-onset form of blindness. We found that complete loss of Kcnj13 is likely postnatal lethal. Among surviving F0-generation mice examined, 80% show mosaic KCNJ13 expression in the retinal pigment epithelium (RPE). Mosaic expression correlates with decreased response to light and photoreceptor degeneration, indicating that Kcnj13 mutant mice mimic human KCNJ13-related LCA disease. Importantly, mosaic animals enable us to directly compare Kcnj13 mutant and wild-type RPE cells in the same eye. We found that RPE cells lacking KCNJ13 protein still survive but overlying photoreceptors exhibit cell degeneration. At the same time, wild-type RPE cells can rescue neighboring photoreceptor cells that overlie mutant RPE cells. These results suggest that KCNJ13 expression is required for RPE cells to maintain photoreceptor survival. Moreover, we show that CRISPR-Cas9 engineered mosaicism can be used to rapidly test candidate gene function in vivo.

Citing Articles

Ion channels research in hPSC-RPE cells: bridging benchwork to clinical applications.

Xu P, Zou W, Yin W, Chen G, Gao G, Zhong X J Transl Med. 2024; 22(1):1073.

PMID: 39604931 PMC: 11600670. DOI: 10.1186/s12967-024-05769-5.


CRISPR technology in human diseases.

Feng Q, Li Q, Zhou H, Wang Z, Lin C, Jiang Z MedComm (2020). 2024; 5(8):e672.

PMID: 39081515 PMC: 11286548. DOI: 10.1002/mco2.672.


Correspondence of Yolk Sac and Embryonic Genotypes in F0 Mouse CRISPants.

Fuselier K, Kruger C, Salbaum J, Kappen C Med Res Arch. 2023; 11(6).

PMID: 37885852 PMC: 10601497. DOI: 10.18103/mra.v11i6.3989.


Therapeutic applications of CRISPR/Cas9 gene editing technology for the treatment of ocular diseases.

Sundaresan Y, Yacoub S, Kodati B, Amankwa C, Raola A, Zode G FEBS J. 2023; 290(22):5248-5269.

PMID: 36877952 PMC: 10480348. DOI: 10.1111/febs.16771.


CRISPR-Cas9 Technology for the Creation of Biological Avatars Capable of Modeling and Treating Pathologies: From Discovery to the Latest Improvements.

Nasrallah A, Sulpice E, Kobaisi F, Gidrol X, Rachidi W Cells. 2022; 11(22).

PMID: 36429042 PMC: 9688409. DOI: 10.3390/cells11223615.


References
1.
Rossant J, Spence A . Chimeras and mosaics in mouse mutant analysis. Trends Genet. 1998; 14(9):358-63. DOI: 10.1016/s0168-9525(98)01552-2. View

2.
Chen Y, Moiseyev G, Takahashi Y, Ma J . RPE65 gene delivery restores isomerohydrolase activity and prevents early cone loss in Rpe65-/- mice. Invest Ophthalmol Vis Sci. 2006; 47(3):1177-84. DOI: 10.1167/iovs.05-0965. View

3.
den Hollander A, Roepman R, Koenekoop R, Cremers F . Leber congenital amaurosis: genes, proteins and disease mechanisms. Prog Retin Eye Res. 2008; 27(4):391-419. DOI: 10.1016/j.preteyeres.2008.05.003. View

4.
Sergouniotis P, Davidson A, Mackay D, Li Z, Yang X, Plagnol V . Recessive mutations in KCNJ13, encoding an inwardly rectifying potassium channel subunit, cause leber congenital amaurosis. Am J Hum Genet. 2011; 89(1):183-90. PMC: 3135807. DOI: 10.1016/j.ajhg.2011.06.002. View

5.
Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J . RNA-programmed genome editing in human cells. Elife. 2013; 2:e00471. PMC: 3557905. DOI: 10.7554/eLife.00471. View