» Articles » PMID: 25664878

Aggregation, Dissolution, and Transformation of Copper Nanoparticles in Natural Waters

Overview
Date 2015 Feb 10
PMID 25664878
Citations 35
Authors
Affiliations
Soon will be listed here.
Abstract

Time-dependent aggregation, sedimentation, dissolution, and transformation of three copper-based engineered nanomaterials (ENMs) of varied properties were measured in eight natural and artificial waters. Nano-Cu and Cu(OH)2 aggregated rapidly to >10(3) nm while the aggregate size of nano-CuO averaged between 250 and 400 nm. Aggregate size for both nano-Cu and nano-CuO showed a positive correlation with ionic strength with a few exceptions. Aggregate size did not correlate well with sedimentation rate, suggesting sedimentation was influenced by other factors. Controlling factors in sedimentation rates varied by particle: Cu(OH)2 particles remained stable in all waters but groundwater, nano-Cu was generally unstable except in waters with high organic content, and nano-CuO was stabilized by the presence of phosphate, which reversed surface charge polarity at concentrations as low as 0.1 mg PO4(3-) L(-1). Dissolution generally correlated with pH, although in saline waters, dissolved copper formed insoluble complexes. Nano-Cu was rapidly oxidized, resulting in dissolution immediately followed by the formation of precipitates. These results suggest factors including phosphate, carbonate, and ENM oxidation state may be key in determining Cu ENM behavior in natural waters.

Citing Articles

Counteractive Effects of Copper Nanoparticles and Betacellulin on Ovarian Cells.

Sirotkin A, Romero-Navarro P, Loncova B, Fabova Z, Bartusova M, Harrath A Nanomaterials (Basel). 2024; 14(23).

PMID: 39683353 PMC: 11643502. DOI: 10.3390/nano14231965.


Cupric-polymeric nanoreactors integrate into copper metabolism to promote chronic diabetic wounds healing.

Tang Q, Tan Y, Leng S, Liu Q, Zhu L, Wang C Mater Today Bio. 2024; 26:101087.

PMID: 38784443 PMC: 11111831. DOI: 10.1016/j.mtbio.2024.101087.


Zebrafish Insights into Nanomaterial Toxicity: A Focused Exploration on Metallic, Metal Oxide, Semiconductor, and Mixed-Metal Nanoparticles.

Mutalik C, Nivedita , Sneka C, Krisnawati D, Yougbare S, Hsu C Int J Mol Sci. 2024; 25(3).

PMID: 38339204 PMC: 10856345. DOI: 10.3390/ijms25031926.


Bacterial Nanocellulose/Copper as a Robust Laccase-Mimicking Bionanozyme for Catalytic Oxidation of Phenolic Pollutants.

Achamyeleh A, Ankala B, Workie Y, Mekonnen M, Abda E ACS Omega. 2023; 8(45):43178-43187.

PMID: 38024715 PMC: 10652835. DOI: 10.1021/acsomega.3c06847.


Multifunctional Composite Materials Based on Anion Exchangers Modified with Copper Compounds-A Review of Their Synthesis Methods, Characteristics and Applications.

Kociolek-Balawejder E, Stanislawska E, Mucha I, Ocinski D, Jacukowicz-Sobala I Polymers (Basel). 2023; 15(17).

PMID: 37688232 PMC: 10490266. DOI: 10.3390/polym15173606.