» Articles » PMID: 25664462

HPOSim: an R Package for Phenotypic Similarity Measure and Enrichment Analysis Based on the Human Phenotype Ontology

Overview
Journal PLoS One
Date 2015 Feb 10
PMID 25664462
Citations 32
Authors
Affiliations
Soon will be listed here.
Abstract

Background: Phenotypic features associated with genes and diseases play an important role in disease-related studies and most of the available methods focus solely on the Online Mendelian Inheritance in Man (OMIM) database without considering the controlled vocabulary. The Human Phenotype Ontology (HPO) provides a standardized and controlled vocabulary covering phenotypic abnormalities in human diseases, and becomes a comprehensive resource for computational analysis of human disease phenotypes. Most of the existing HPO-based software tools cannot be used offline and provide only few similarity measures. Therefore, there is a critical need for developing a comprehensive and offline software for phenotypic features similarity based on HPO.

Results: HPOSim is an R package for analyzing phenotypic similarity for genes and diseases based on HPO data. Seven commonly used semantic similarity measures are implemented in HPOSim. Enrichment analysis of gene sets and disease sets are also implemented, including hypergeometric enrichment analysis and network ontology analysis (NOA).

Conclusions: HPOSim can be used to predict disease genes and explore disease-related function of gene modules. HPOSim is open source and freely available at SourceForge (https://sourceforge.net/p/hposim/).

Citing Articles

Improving patient clustering by incorporating structured variable label relationships in similarity measures.

Lambert J, Leutenegger A, Baudot A, Jannot A BMC Med Res Methodol. 2025; 25(1):72.

PMID: 40089699 DOI: 10.1186/s12874-025-02459-8.


Polycomb-associated and Trithorax-associated developmental conditions-phenotypic convergence and heterogeneity.

Smail A, Al-Jawahiri R, Baker K Eur J Hum Genet. 2025; .

PMID: 39843918 DOI: 10.1038/s41431-025-01784-2.


Pheno-Ranker: a toolkit for comparison of phenotypic data stored in GA4GH standards and beyond.

Leist I, Rivas-Torrubia M, Alarcon-Riquelme M, Barturen G, Consortium P, Gut I BMC Bioinformatics. 2024; 25(1):373.

PMID: 39633268 PMC: 11616229. DOI: 10.1186/s12859-024-05993-2.


IDeRare: a lightweight and extensible open-source phenotype and exome analysis pipeline for germline rare disease diagnosis.

Harsono I, Ariani Y, Benyamin B, Fadilah F, Pujianto D, Hafifah C JAMIA Open. 2024; 7(2):ooae052.

PMID: 38883202 PMC: 11179852. DOI: 10.1093/jamiaopen/ooae052.


DiSMVC: a multi-view graph collaborative learning framework for measuring disease similarity.

Wei H, Gao L, Wu S, Jiang Y, Liu B Bioinformatics. 2024; 40(5).

PMID: 38715444 PMC: 11256965. DOI: 10.1093/bioinformatics/btae306.


References
1.
Vulto-van Silfhout A, van Ravenswaaij C, Hehir-Kwa J, Verwiel E, Dirks R, Van Vooren S . An update on ECARUCA, the European Cytogeneticists Association Register of Unbalanced Chromosome Aberrations. Eur J Med Genet. 2013; 56(9):471-4. DOI: 10.1016/j.ejmg.2013.06.010. View

2.
Kohler S, Doelken S, Mungall C, Bauer S, Firth H, Bailleul-Forestier I . The Human Phenotype Ontology project: linking molecular biology and disease through phenotype data. Nucleic Acids Res. 2013; 42(Database issue):D966-74. PMC: 3965098. DOI: 10.1093/nar/gkt1026. View

3.
Yu G, Wang L, Yan G, He Q . DOSE: an R/Bioconductor package for disease ontology semantic and enrichment analysis. Bioinformatics. 2015; 31(4):608-9. DOI: 10.1093/bioinformatics/btu684. View

4.
Kanehisa M, Goto S . KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 1999; 28(1):27-30. PMC: 102409. DOI: 10.1093/nar/28.1.27. View

5.
Ashburner M, Ball C, Blake J, Botstein D, Butler H, Cherry J . Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000; 25(1):25-9. PMC: 3037419. DOI: 10.1038/75556. View