» Articles » PMID: 25661904

Octarepeat Region Flexibility Impacts Prion Function, Endoproteolysis and Disease Manifestation

Abstract

The cellular prion protein (PrP(C)) comprises a natively unstructured N-terminal domain, including a metal-binding octarepeat region (OR) and a linker, followed by a C-terminal domain that misfolds to form PrP(S) (c) in Creutzfeldt-Jakob disease. PrP(C) β-endoproteolysis to the C2 fragment allows PrP(S) (c) formation, while α-endoproteolysis blocks production. To examine the OR, we used structure-directed design to make novel alleles, 'S1' and 'S3', locking this region in extended or compact conformations, respectively. S1 and S3 PrP resembled WT PrP in supporting peripheral nerve myelination. Prion-infected S1 and S3 transgenic mice both accumulated similar low levels of PrP(S) (c) and infectious prion particles, but differed in their clinical presentation. Unexpectedly, S3 PrP overproduced C2 fragment in the brain by a mechanism distinct from metal-catalysed hydrolysis reported previously. OR flexibility is concluded to impact diverse biological endpoints; it is a salient variable in infectious disease paradigms and modulates how the levels of PrP(S) (c) and infectivity can either uncouple or engage to drive the onset of clinical disease.

Citing Articles

Prion Protein Endoproteolysis: Cleavage Sites, Mechanisms and Connections to Prion Disease.

Castle A, Westaway D J Neurochem. 2025; 169(1):e16310.

PMID: 39874431 PMC: 11774512. DOI: 10.1111/jnc.16310.


Application of N-Terminal Labeling Methods Provide Novel Insights into Endoproteolysis of the Prion Protein .

Gomez-Cardona E, Eskandari-Sedighi G, Fahlman R, Westaway D, Julien O ACS Chem Neurosci. 2023; 15(1):134-146.

PMID: 38095594 PMC: 10768724. DOI: 10.1021/acschemneuro.3c00533.


Copper coordination modulates prion conversion and infectivity in mammalian prion proteins.

Legname G Prion. 2023; 17(1):1-6.

PMID: 36597284 PMC: 9815218. DOI: 10.1080/19336896.2022.2163835.


Beta-endoproteolysis of the cellular prion protein by dipeptidyl peptidase-4 and fibroblast activation protein.

Castle A, Kang S, Eskandari-Sedighi G, Wohlgemuth S, Nguyen M, Drucker D Proc Natl Acad Sci U S A. 2022; 120(1):e2209815120.

PMID: 36574660 PMC: 9910601. DOI: 10.1073/pnas.2209815120.


Investigating CRISPR/Cas9 gene drive for production of disease-preventing prion gene alleles.

Castle A, Wohlgemuth S, Arce L, Westaway D PLoS One. 2022; 17(6):e0269342.

PMID: 35671288 PMC: 9173614. DOI: 10.1371/journal.pone.0269342.


References
1.
Sonati T, Reimann R, Falsig J, Baral P, OConnor T, Hornemann S . The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature. 2013; 501(7465):102-6. DOI: 10.1038/nature12402. View

2.
Qin K, Yang D, Yang Y, Chishti M, Meng L, Kretzschmar H . Copper(II)-induced conformational changes and protease resistance in recombinant and cellular PrP. Effect of protein age and deamidation. J Biol Chem. 2000; 275(25):19121-31. DOI: 10.1074/jbc.275.25.19121. View

3.
Jackson G, Murray I, Hosszu L, Gibbs N, Waltho J, Clarke A . Location and properties of metal-binding sites on the human prion protein. Proc Natl Acad Sci U S A. 2001; 98(15):8531-5. PMC: 37470. DOI: 10.1073/pnas.151038498. View

4.
Lewis V, Hill A, Haigh C, Klug G, Masters C, Lawson V . Increased proportions of C1 truncated prion protein protect against cellular M1000 prion infection. J Neuropathol Exp Neurol. 2009; 68(10):1125-35. DOI: 10.1097/NEN.0b013e3181b96981. View

5.
Jimenez-Huete A, Lievens P, Vidal R, Piccardo P, Ghetti B, Tagliavini F . Endogenous proteolytic cleavage of normal and disease-associated isoforms of the human prion protein in neural and non-neural tissues. Am J Pathol. 1998; 153(5):1561-72. PMC: 1853409. DOI: 10.1016/S0002-9440(10)65744-6. View