» Articles » PMID: 25649823

Aversion and Attraction Through Olfaction

Overview
Journal Curr Biol
Publisher Cell Press
Specialty Biology
Date 2015 Feb 5
PMID 25649823
Citations 82
Authors
Affiliations
Soon will be listed here.
Abstract

Sensory cues that predict reward or punishment are fundamental drivers of animal behavior. For example, attractive odors of palatable food or a potential mate predict reward, while aversive odors of pathogen-laced food or a predator predict punishment. Aversive and attractive odors can be detected by intermingled sensory neurons that express highly related olfactory receptors and display similar central projections. These findings raise basic questions of how innate odor valence is extracted from olfactory circuits, how such circuits are developmentally endowed and modulated by state, and how innate and learned odor responses are related. Here, we review odors, receptors and neural circuits associated with stimulus valence, discussing salient principles derived from studies on nematodes, insects and vertebrates. Understanding the organization of neural circuitry that mediates odor aversion and attraction will provide key insights into how the brain functions.

Citing Articles

Multiple methods for assessing learning and memory in demonstrates the highly complex, context-dependent genetic underpinnings of cognitive traits.

Hamlin V, Ansaf H, Heffern R, Williams-Simon P, King E bioRxiv. 2025; .

PMID: 40060392 PMC: 11888412. DOI: 10.1101/2025.02.26.640179.


Calcium levels in ASER neurons determine behavioral valence by engaging distinct neuronal circuits in C. elegans.

Xue W, Chen Y, Lei Z, Wang Y, Liu J, Wen X Nat Commun. 2025; 16(1):1814.

PMID: 39979341 PMC: 11842750. DOI: 10.1038/s41467-025-57051-x.


Enhancing Reproducibility in Chemotaxis Assays for Caenorhabditis elegans.

Cesar L, Morud J Curr Protoc. 2025; 5(2):e70106.

PMID: 39964098 PMC: 11834369. DOI: 10.1002/cpz1.70106.


High Antennal Expression of and Participate in the Recognition of Alarm Pheromones by Buren.

Jiang X, Shen J, Lin P, Hou Y Insects. 2025; 16(1).

PMID: 39859624 PMC: 11765799. DOI: 10.3390/insects16010043.


Control of innate olfactory valence by segregated cortical amygdala circuits.

Howe J, Chan C, Lee D, Blanquart M, Lee J, Romero H bioRxiv. 2024; .

PMID: 38979308 PMC: 11230396. DOI: 10.1101/2024.06.26.600895.


References
1.
Lee Y, Kim S, Montell C . Avoiding DEET through insect gustatory receptors. Neuron. 2010; 67(4):555-61. PMC: 2929391. DOI: 10.1016/j.neuron.2010.07.006. View

2.
Ruebenbauer A, Schlyter F, Hansson B, Lofstedt C, Larsson M . Genetic variability and robustness of host odor preference in Drosophila melanogaster. Curr Biol. 2008; 18(18):1438-43. DOI: 10.1016/j.cub.2008.08.062. View

3.
Ronderos D, Lin C, Potter C, Smith D . Farnesol-detecting olfactory neurons in Drosophila. J Neurosci. 2014; 34(11):3959-68. PMC: 3951695. DOI: 10.1523/JNEUROSCI.4582-13.2014. View

4.
Rosenkranz J, Grace A . Dopamine-mediated modulation of odour-evoked amygdala potentials during pavlovian conditioning. Nature. 2002; 417(6886):282-7. DOI: 10.1038/417282a. View

5.
Zhang Y, Lu H, Bargmann C . Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature. 2005; 438(7065):179-84. DOI: 10.1038/nature04216. View