» Articles » PMID: 25637671

Effects of Bisphenol A on Glucose Homeostasis and Brain Insulin Signaling Pathways in Male Mice

Overview
Specialty Endocrinology
Date 2015 Feb 1
PMID 25637671
Citations 6
Authors
Affiliations
Soon will be listed here.
Abstract

The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance.

Citing Articles

Endocrine Disruptors in Child Obesity and Related Disorders: Early Critical Windows of Exposure.

Celik M, Yesildemir O Curr Nutr Rep. 2025; 14(1):14.

PMID: 39775248 PMC: 11706864. DOI: 10.1007/s13668-024-00604-1.


Ferulic acid ameliorates bisphenol A (BPA)-induced Alzheimer's disease-like pathology through Akt-ERK crosstalk pathway in male rats.

Khalifa M, Fayed R, Ahmed Y, Abdelhameed M, Essa A, Khalil H Psychopharmacology (Berl). 2024; 242(3):461-480.

PMID: 39441400 PMC: 11861243. DOI: 10.1007/s00213-024-06697-4.


Induction of fibrosis following exposure to bisphenol A and its analogues in 3D human uterine leiomyoma cultures.

Liu J, Yu L, Castro L, Yan Y, Bushel P, Scappini E J Hazard Mater. 2024; 476:134772.

PMID: 38901254 PMC: 11309888. DOI: 10.1016/j.jhazmat.2024.134772.


Sulforaphane ameliorates bisphenol A-induced hepatic lipid accumulation by inhibiting endoplasmic reticulum stress.

Hong L, Xu Y, Wang D, Zhang Q, Li X, Xie C Sci Rep. 2023; 13(1):1147.

PMID: 36670177 PMC: 9859828. DOI: 10.1038/s41598-023-28395-5.


In Vitro Effects of Emerging Bisphenols on Myocyte Differentiation and Insulin Responsiveness.

Jing J, Pu Y, Veiga-Lopez A, Lyu L Toxicol Sci. 2020; 178(1):189-200.

PMID: 32750123 PMC: 7820364. DOI: 10.1093/toxsci/kfaa130.