Effects of Bisphenol A on Glucose Homeostasis and Brain Insulin Signaling Pathways in Male Mice
Overview
Authors
Affiliations
The potential effects of Bisphenol A (BPA) on peripheral insulin resistance have recently gained more attention, however, its functions on brain insulin resistance are still unknown. The aim of the present study was to investigate the effects of BPA on insulin signaling and glucose transport in mouse brain. The male mice were administrated of 100 μg/kg/day BPA or vehicle for 15 days then challenged with glucose and insulin tolerance tests. The insulin levels were detected with radioimmunoassay (RIA), and the insulin signaling pathways were investigated by Western blot. Our results revealed that BPA significantly increased peripheral plasma insulin levels, and decreased the insulin signals including phosphorylated insulin receptor (p-IR), phosphorylated insulin receptor substrate 1 (p-IRS1), phosphorylated protein kinase B (p-AKT), phosphorylated glycogen synthase kinase 3β (p-GSK3β) and phosphorylated extracellular regulated protein kinases (p-ERK1/2) in the brain, though insulin expression in both hippocampus and profrontal cortex was increased. In parallel, BPA exposure might contribute to glucose transport disturbance in the brain since the expression of glucose transporters were markedly decreased. In conclusion, BPA exposure perturbs the insulin signaling and glucose transport in the brain, therefore, it might be a risk factor for brain insulin resistance.
Endocrine Disruptors in Child Obesity and Related Disorders: Early Critical Windows of Exposure.
Celik M, Yesildemir O Curr Nutr Rep. 2025; 14(1):14.
PMID: 39775248 PMC: 11706864. DOI: 10.1007/s13668-024-00604-1.
Khalifa M, Fayed R, Ahmed Y, Abdelhameed M, Essa A, Khalil H Psychopharmacology (Berl). 2024; 242(3):461-480.
PMID: 39441400 PMC: 11861243. DOI: 10.1007/s00213-024-06697-4.
Liu J, Yu L, Castro L, Yan Y, Bushel P, Scappini E J Hazard Mater. 2024; 476:134772.
PMID: 38901254 PMC: 11309888. DOI: 10.1016/j.jhazmat.2024.134772.
Hong L, Xu Y, Wang D, Zhang Q, Li X, Xie C Sci Rep. 2023; 13(1):1147.
PMID: 36670177 PMC: 9859828. DOI: 10.1038/s41598-023-28395-5.
In Vitro Effects of Emerging Bisphenols on Myocyte Differentiation and Insulin Responsiveness.
Jing J, Pu Y, Veiga-Lopez A, Lyu L Toxicol Sci. 2020; 178(1):189-200.
PMID: 32750123 PMC: 7820364. DOI: 10.1093/toxsci/kfaa130.