» Articles » PMID: 25637556

RAMPART: a Workflow Management System for De Novo Genome Assembly

Overview
Journal Bioinformatics
Specialty Biology
Date 2015 Feb 1
PMID 25637556
Citations 16
Authors
Affiliations
Soon will be listed here.
Abstract

Motivation: The de novo assembly of genomes from whole- genome shotgun sequence data is a computationally intensive, multi-stage task and it is not known a priori which methods and parameter settings will produce optimal results. In current de novo assembly projects, a popular strategy involves trying many approaches, using different tools and settings, and then comparing and contrasting the results in order to select a final assembly for publication.

Results: Herein, we present RAMPART, a configurable workflow management system for de novo genome assembly, which helps the user identify combinations of third-party tools and settings that provide good results for their particular genome and sequenced reads. RAMPART is designed to exploit High performance computing environments, such as clusters and shared memory systems, where available.

Availability And Implementation: RAMPART is available under the GPLv3 license at: https://github.com/TGAC/RAMPART.

Citing Articles

Step-by-Step Metagenomics for Food Microbiome Analysis: A Detailed Review.

Sadurski J, Polak-Berecka M, Staniszewski A, Wasko A Foods. 2024; 13(14).

PMID: 39063300 PMC: 11276190. DOI: 10.3390/foods13142216.


Tonsils are major sites of persistence of SARS-CoV-2 in children.

Lima T, Martins R, Miura C, Souza M, Anzolini Cassiano M, Rodrigues T Microbiol Spectr. 2023; :e0134723.

PMID: 37737615 PMC: 10581087. DOI: 10.1128/spectrum.01347-23.


Combining viral genomics and clinical data to assess risk factors for severe COVID-19 (mortality, ICU admission, or intubation) amongst hospital patients in a large acute UK NHS hospital Trust.

Foxley-Marrable M, DCruz L, Meredith P, Glaysher S, Beckett A, Goudarzi S PLoS One. 2023; 18(3):e0283447.

PMID: 36952555 PMC: 10035897. DOI: 10.1371/journal.pone.0283447.


Multiple pathways of SARS-CoV-2 nosocomial transmission uncovered by integrated genomic and epidemiological analyses during the second wave of the COVID-19 pandemic in the UK.

Cook K, Beckett A, Glaysher S, Goudarzi S, Fearn C, Loveson K Front Cell Infect Microbiol. 2023; 12:1066390.

PMID: 36741977 PMC: 9895378. DOI: 10.3389/fcimb.2022.1066390.


A single early introduction governed viral diversity in the second wave of SARS-CoV-2 epidemic in Hungary.

Ari E, Vasarhelyi B, Kemenesi G, Toth G, Zana B, Somogyi B Virus Evol. 2022; 8(2):veac069.

PMID: 35996591 PMC: 9384595. DOI: 10.1093/ve/veac069.


References
1.
Gnerre S, MacCallum I, Przybylski D, Ribeiro F, Burton J, Walker B . High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A. 2010; 108(4):1513-8. PMC: 3029755. DOI: 10.1073/pnas.1017351108. View

2.
Tritt A, Eisen J, Facciotti M, Darling A . An integrated pipeline for de novo assembly of microbial genomes. PLoS One. 2012; 7(9):e42304. PMC: 3441570. DOI: 10.1371/journal.pone.0042304. View

3.
Abbas M, Malluhi Q, Balakrishnan P . Assessment of de novo assemblers for draft genomes: a case study with fungal genomes. BMC Genomics. 2014; 15 Suppl 9:S10. PMC: 4290589. DOI: 10.1186/1471-2164-15-S9-S10. View

4.
Seemann T . Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014; 30(14):2068-9. DOI: 10.1093/bioinformatics/btu153. View

5.
Koren S, Treangen T, Hill C, Pop M, Phillippy A . Automated ensemble assembly and validation of microbial genomes. BMC Bioinformatics. 2014; 15:126. PMC: 4030574. DOI: 10.1186/1471-2105-15-126. View