» Articles » PMID: 25631569

Exploring Strategies for Classification of External Stimuli Using Statistical Features of the Plant Electrical Response

Overview
Date 2015 Jan 30
PMID 25631569
Citations 21
Authors
Affiliations
Soon will be listed here.
Abstract

Plants sense their environment by producing electrical signals which in essence represent changes in underlying physiological processes. These electrical signals, when monitored, show both stochastic and deterministic dynamics. In this paper, we compute 11 statistical features from the raw non-stationary plant electrical signal time series to classify the stimulus applied (causing the electrical signal). By using different discriminant analysis-based classification techniques, we successfully establish that there is enough information in the raw electrical signal to classify the stimuli. In the process, we also propose two standard features which consistently give good classification results for three types of stimuli--sodium chloride (NaCl), sulfuric acid (H₂SO₄) and ozone (O₃). This may facilitate reduction in the complexity involved in computing all the features for online classification of similar external stimuli in future.

Citing Articles

Needle/electrode insertion device for measuring plant electrical signals.

Servin M, Chavez A, Sanchez M, Acuna Garcia J, Gonzalez R, Medina L J Plant Res. 2025; .

PMID: 40038156 DOI: 10.1007/s10265-025-01625-9.


Evaluating Bacterial Nanocellulose Interfaces for Recording Surface Biopotentials from Plants.

Reynolds J, Wilkins M, Martin D, Taggart M, Rivera K, Tunc-Ozdemir M Sensors (Basel). 2024; 24(7).

PMID: 38610546 PMC: 11014089. DOI: 10.3390/s24072335.


Common bean under different water availability reveals classifiable stimuli-specific signatures in plant electrome.

de Toledo G, Reissig G, Senko L, Pereira D, da Silva A, Souza G Plant Signal Behav. 2024; 19(1):2333144.

PMID: 38545860 PMC: 10984121. DOI: 10.1080/15592324.2024.2333144.


Leveraging the Sensitivity of Plants with Deep Learning to Recognize Human Emotions.

Kruse J, Ciechanowski L, Dupuis A, Vazquez I, Gloor P Sensors (Basel). 2024; 24(6).

PMID: 38544181 PMC: 10974812. DOI: 10.3390/s24061917.


Early detection of dark-affected plant mechanical responses using enhanced electrical signals.

Li H, Fotouhi N, Liu F, Ji H, Wu Q Plant Methods. 2024; 20(1):49.

PMID: 38532481 PMC: 10964643. DOI: 10.1186/s13007-024-01169-4.


References
1.
Volkov A, Ranatunga D . Plants as environmental biosensors. Plant Signal Behav. 2009; 1(3):105-15. PMC: 2635006. DOI: 10.4161/psb.1.3.3000. View

2.
Quiroga R, Rosso O, Basar E, Schurmann M . Wavelet entropy in event-related potentials: a new method shows ordering of EEG oscillations. Biol Cybern. 2001; 84(4):291-9. DOI: 10.1007/s004220000212. View

3.
Kannathal N, Rajendra Acharya U, Lim C, Sadasivan P . Characterization of EEG--a comparative study. Comput Methods Programs Biomed. 2005; 80(1):17-23. DOI: 10.1016/j.cmpb.2005.06.005. View

4.
Fromm J, Lautner S . Electrical signals and their physiological significance in plants. Plant Cell Environ. 2007; 30(3):249-257. DOI: 10.1111/j.1365-3040.2006.01614.x. View

5.
Hjorth B . EEG analysis based on time domain properties. Electroencephalogr Clin Neurophysiol. 1970; 29(3):306-10. DOI: 10.1016/0013-4694(70)90143-4. View