» Articles » PMID: 25621173

Mitochondria As Biosynthetic Factories for Cancer Proliferation

Overview
Journal Cancer Metab
Publisher Biomed Central
Specialty Oncology
Date 2015 Jan 27
PMID 25621173
Citations 176
Authors
Affiliations
Soon will be listed here.
Abstract

Unchecked growth and proliferation is a hallmark of cancer, and numerous oncogenic mutations reprogram cellular metabolism to fuel these processes. As a central metabolic organelle, mitochondria execute critical biochemical functions for the synthesis of fundamental cellular components, including fatty acids, amino acids, and nucleotides. Despite the extensive interest in the glycolytic phenotype of many cancer cells, tumors contain fully functional mitochondria that support proliferation and survival. Furthermore, tumor cells commonly increase flux through one or more mitochondrial pathways, and pharmacological inhibition of mitochondrial metabolism is emerging as a potential therapeutic strategy in some cancers. Here, we review the biosynthetic roles of mitochondrial metabolism in tumors and highlight specific cancers where these processes are activated.

Citing Articles

Role of Mitochondrial Dynamics in Skin Homeostasis: An Update.

Quan T, Li R, Gao T Int J Mol Sci. 2025; 26(5).

PMID: 40076431 PMC: 11898645. DOI: 10.3390/ijms26051803.


Hyaluronic Acid Influences Amino Acid Metabolism via Differential L-Type Amino Acid Transporter 1 Expression in the U87-Malignant Glioma Cell Line.

Bale A, Thammineni S, Bhargava R, Harley B Adv Nanobiomed Res. 2025; 4(12).

PMID: 40017591 PMC: 11864772. DOI: 10.1002/anbr.202400107.


Molecular mechanism of genetic, epigenetic, and metabolic alteration in lung cancer.

Fatima S, Kumar V, Kumar D Med Oncol. 2025; 42(3):61.

PMID: 39893601 DOI: 10.1007/s12032-025-02608-5.


Outer mitochondrial membrane E3 Ub ligase MARCH5 controls de novo peroxisome biogenesis.

Verhoeven N, Oshima Y, Cartier E, Bippes C, Neutzner A, Boyman L Dev Cell. 2024; 60(1):40-50.e5.

PMID: 39423819 PMC: 11706706. DOI: 10.1016/j.devcel.2024.09.010.


Combination of low glucose and SCD1 inhibition impairs cancer metabolic plasticity and growth in MCF-7 cancer cells: a comprehensive metabolomic and lipidomic analysis.

Zhu W, Lusk J, Pascua V, Djukovic D, Raftery D Metabolomics. 2024; 20(5):112.

PMID: 39369160 DOI: 10.1007/s11306-024-02179-y.


References
1.
Gameiro P, Laviolette L, Kelleher J, Iliopoulos O, Stephanopoulos G . Cofactor balance by nicotinamide nucleotide transhydrogenase (NNT) coordinates reductive carboxylation and glucose catabolism in the tricarboxylic acid (TCA) cycle. J Biol Chem. 2013; 288(18):12967-77. PMC: 3642339. DOI: 10.1074/jbc.M112.396796. View

2.
Mullen A, Hu Z, Shi X, Jiang L, Boroughs L, Kovacs Z . Oxidation of alpha-ketoglutarate is required for reductive carboxylation in cancer cells with mitochondrial defects. Cell Rep. 2014; 7(5):1679-1690. PMC: 4057960. DOI: 10.1016/j.celrep.2014.04.037. View

3.
Zimmer M, Doucette D, Siddiqui N, Iliopoulos O . Inhibition of hypoxia-inducible factor is sufficient for growth suppression of VHL-/- tumors. Mol Cancer Res. 2004; 2(2):89-95. View

4.
Warburg O . On the origin of cancer cells. Science. 1956; 123(3191):309-14. DOI: 10.1126/science.123.3191.309. View

5.
Bonnet S, Archer S, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R . A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007; 11(1):37-51. DOI: 10.1016/j.ccr.2006.10.020. View