» Articles » PMID: 25615132

Dynamics of Random Neural Networks with Bistable Units

Overview
Authors
Affiliations
Soon will be listed here.
Abstract

We construct and analyze a rate-based neural network model in which self-interacting units represent clusters of neurons with strong local connectivity and random interunit connections reflect long-range interactions. When sufficiently strong, the self-interactions make the individual units bistable. Simulation results, mean-field calculations, and stability analysis reveal the different dynamic regimes of this network and identify the locations in parameter space of its phase transitions. We identify an interesting dynamical regime exhibiting transient but long-lived chaotic activity that combines features of chaotic and multiple fixed-point attractors.

Citing Articles

Multistability in neural systems with random cross-connections.

Breffle J, Mokashe S, Qiu S, Miller P Biol Cybern. 2023; 117(6):485-506.

PMID: 38133664 PMC: 11773687. DOI: 10.1007/s00422-023-00981-w.


A reservoir of timescales emerges in recurrent circuits with heterogeneous neural assemblies.

Stern M, Istrate N, Mazzucato L Elife. 2023; 12.

PMID: 38084779 PMC: 10810607. DOI: 10.7554/eLife.86552.


Multitasking via baseline control in recurrent neural networks.

Ogawa S, Fumarola F, Mazzucato L Proc Natl Acad Sci U S A. 2023; 120(33):e2304394120.

PMID: 37549275 PMC: 10437433. DOI: 10.1073/pnas.2304394120.


Theory of Gating in Recurrent Neural Networks.

Krishnamurthy K, Can T, Schwab D Phys Rev X. 2022; 12(1).

PMID: 36545030 PMC: 9762509. DOI: 10.1103/physrevx.12.011011.


Input correlations impede suppression of chaos and learning in balanced firing-rate networks.

Engelken R, Ingrosso A, Khajeh R, Goedeke S, Abbott L PLoS Comput Biol. 2022; 18(12):e1010590.

PMID: 36469504 PMC: 9754616. DOI: 10.1371/journal.pcbi.1010590.


References
1.
Kohn A, Smith M . Stimulus dependence of neuronal correlation in primary visual cortex of the macaque. J Neurosci. 2005; 25(14):3661-73. PMC: 6725370. DOI: 10.1523/JNEUROSCI.5106-04.2005. View

2.
Wilson H, Cowan J . Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972; 12(1):1-24. PMC: 1484078. DOI: 10.1016/S0006-3495(72)86068-5. View

3.
Song S, Sjostrom P, Reigl M, Nelson S, Chklovskii D . Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 2005; 3(3):e68. PMC: 1054880. DOI: 10.1371/journal.pbio.0030068. View

4.
Churchland M, Yu B, Cunningham J, Sugrue L, Cohen M, Corrado G . Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci. 2010; 13(3):369-78. PMC: 2828350. DOI: 10.1038/nn.2501. View

5.
Sompolinsky , Crisanti , Sommers . Chaos in random neural networks. Phys Rev Lett. 1988; 61(3):259-262. DOI: 10.1103/PhysRevLett.61.259. View