» Articles » PMID: 25612563

Characterization and Reactivity of a Terminal Nickel(III)-oxygen Adduct

Overview
Journal Chemistry
Specialty Chemistry
Date 2015 Jan 24
PMID 25612563
Citations 10
Authors
Affiliations
Soon will be listed here.
Abstract

High-valent terminal metal-oxygen adducts are hypothesized to be the potent oxidizing reactants in late transition metal oxidation catalysis. In particular, examples of high-valent terminal nickel-oxygen adducts are scarce, meaning there is a dearth in the understanding of such oxidants. A monoanionic Ni(II)-bicarbonate complex has been found to react in a 1:1 ratio with the one-electron oxidant tris(4-bromophenyl)ammoniumyl hexachloroantimonate, yielding a thermally unstable intermediate in high yield (ca. 95%). Electronic absorption, electronic paramagnetic resonance, and X-ray absorption spectroscopies and density functional theory calculations confirm its description as a low-spin (S = 1/2), square planar Ni(III)-oxygen adduct. This rare example of a high-valent terminal nickel-oxygen complex performs oxidations of organic substrates, including 2,6-di-tert-butylphenol and triphenylphosphine, which are indicative of hydrogen atom abstraction and oxygen atom transfer reactivity, respectively.

Citing Articles

Harnessing Oxidizing Potential of Nickel for Sustainable Hydrocarbon Functionalization.

Khazanov T, Mukherjee A Molecules. 2024; 29(21).

PMID: 39519829 PMC: 11547806. DOI: 10.3390/molecules29215188.


Unraveling the Mechanism of Hydrogen Atom Transfer by a Nickel-Hypochlorite Species and the Influence of Electronic Effects.

Juvanteny A, Souilah C, Quintero R, Garcia-Bellido C, Pages-Vila N, Corona T Inorg Chem. 2024; 63(31):14325-14334.

PMID: 39042784 PMC: 11304384. DOI: 10.1021/acs.inorgchem.4c00360.


An artificial nickel chlorinase based on the biotin-streptavidin technology.

Yu K, Zhang K, Jakob R, Maier T, Ward T Chem Commun (Camb). 2024; 60(14):1944-1947.

PMID: 38277163 PMC: 10863421. DOI: 10.1039/d3cc05847f.


Altering the Localization of an Unpaired Spin in a Formal Ni(V) Species.

Awasthi A, Mallojjala S, Kumar R, Eerlapally R, Hirschi J, Draksharapu A Chemistry. 2023; 30(4):e202302824.

PMID: 37903027 PMC: 10841873. DOI: 10.1002/chem.202302824.


Evidence for a High-Valent Iron-Fluoride That Mediates Oxidative C(sp)-H Fluorination.

Panda C, Anny-Nzekwue O, Doyle L, Gericke R, McDonald A JACS Au. 2023; 3(3):919-928.

PMID: 37006763 PMC: 10052241. DOI: 10.1021/jacsau.3c00021.


References
1.
Bediako D, Surendranath Y, Nocera D . Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J Am Chem Soc. 2013; 135(9):3662-74. DOI: 10.1021/ja3126432. View

2.
Sarangi R . X-ray absorption near-edge spectroscopy in bioinorganic chemistry: Application to M-O systems. Coord Chem Rev. 2013; 257(2):459-472. PMC: 3601846. DOI: 10.1016/j.ccr.2012.06.024. View

3.
Solomon E, Heppner D, Johnston E, Ginsbach J, Cirera J, Qayyum M . Copper active sites in biology. Chem Rev. 2014; 114(7):3659-853. PMC: 4040215. DOI: 10.1021/cr400327t. View

4.
Ottenwaelder X, Ruiz-Garcia R, Blondin G, Carasco R, Cano J, Lexa D . From metal to ligand electroactivity in nickel(II) oxamato complexes. Chem Commun (Camb). 2004; (5):504-5. DOI: 10.1039/b312295f. View

5.
Yano J, Yachandra V . Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem Rev. 2014; 114(8):4175-205. PMC: 4002066. DOI: 10.1021/cr4004874. View