» Articles » PMID: 25593249

Draft Genome Sequence of Novosphingobium Sp. Strain MBES04, Isolated from Sunken Wood from Suruga Bay, Japan

Overview
Journal Genome Announc
Date 2015 Jan 17
PMID 25593249
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

This report describes the draft genome sequence of Novosphingobium sp. strain MBES04, isolated from sunken wood from Suruga Bay, Japan, which is capable of degrading a wide range of lignin-related aromatic monomers. The draft genome sequence contains 5,361,448 bp, with a G+C content of 65.4%.

Citing Articles

Comparative Genomics of Degradative Strains With Special Reference to Microcystin-Degrading sp. THN1.

Wang J, Wang C, Li J, Bai P, Li Q, Shen M Front Microbiol. 2018; 9:2238.

PMID: 30319567 PMC: 6167471. DOI: 10.3389/fmicb.2018.02238.


Temporal and Spatial Variations of Bacterial and Faunal Communities Associated with Deep-Sea Wood Falls.

Ristova P, Bienhold C, Wenzhofer F, Rossel P, Boetius A PLoS One. 2017; 12(1):e0169906.

PMID: 28122036 PMC: 5266260. DOI: 10.1371/journal.pone.0169906.


Enzymatic Specific Production and Chemical Functionalization of Phenylpropanone Platform Monomers from Lignin.

Ohta Y, Hasegawa R, Kurosawa K, Maeda A, Koizumi T, Nishimura H ChemSusChem. 2016; 10(2):425-433.

PMID: 27878983 PMC: 5299523. DOI: 10.1002/cssc.201601235.


Recent Developments in Using Advanced Sequencing Technologies for the Genomic Studies of Lignin and Cellulose Degrading Microorganisms.

Kameshwar A, Qin W Int J Biol Sci. 2016; 12(2):156-71.

PMID: 26884714 PMC: 4737673. DOI: 10.7150/ijbs.13537.


Combination of six enzymes of a marine Novosphingobium converts the stereoisomers of β-O-4 lignin model dimers into the respective monomers.

Ohta Y, Nishi S, Hasegawa R, Hatada Y Sci Rep. 2015; 5:15105.

PMID: 26477321 PMC: 4609964. DOI: 10.1038/srep15105.

References
1.
Aylward F, McDonald B, Adams S, Valenzuela A, Schmidt R, Goodwin L . Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol. 2013; 79(12):3724-33. PMC: 3675938. DOI: 10.1128/AEM.00518-13. View

2.
Lowe T, Eddy S . tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997; 25(5):955-64. PMC: 146525. DOI: 10.1093/nar/25.5.955. View

3.
Fuchs G, Boll M, Heider J . Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol. 2011; 9(11):803-16. DOI: 10.1038/nrmicro2652. View

4.
Linger J, Vardon D, Guarnieri M, Karp E, Hunsinger G, Franden M . Lignin valorization through integrated biological funneling and chemical catalysis. Proc Natl Acad Sci U S A. 2014; 111(33):12013-8. PMC: 4143016. DOI: 10.1073/pnas.1410657111. View

5.
Masai E, Katayama Y, Fukuda M . Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotechnol Biochem. 2007; 71(1):1-15. DOI: 10.1271/bbb.60437. View