» Articles » PMID: 25587416

Polymerization Parameters Influencing the QCM Response Characteristics of BSA MIP

Overview
Specialty Biotechnology
Date 2015 Jan 15
PMID 25587416
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Designing Molecularly Imprinted Polymers for sensing proteins is still a somewhat empirical process due to the inherent complexity of protein imprinting. Based on Bovine Serum Albumin as a model analyte, we explored the influence of a range of experimental parameters on the final sensor responses. The optimized polymer contains 70% cross linker. Lower amounts lead to higher sensitivity, but also sensor response times substantially increase (to up to 10 h) at constant imprinting effect (signal ratio MIP/NIP on quartz crystal microbalance-QCM). However, by shifting the polymer properties to more hydrophilic by replacing methacrylic acid by acrylic acid, part of the decreased sensitivity can be recovered leading to appreciable sensor responses. Changing polymer morphology by bulk imprinting and nanoparticle approaches has much lower influence on sensitivity.

Citing Articles

A Review on Perception of Binding Kinetics in Affinity Biosensors: Challenges and Opportunities.

McCann B, Tipper B, Shahbeigi S, Soleimani M, Jabbari M, Nasr Esfahani M ACS Omega. 2025; 10(5):4197-4216.

PMID: 39959045 PMC: 11822510. DOI: 10.1021/acsomega.4c10040.


Adsorption and Morphology Analysis of Bovine Serum Albumin on a Micropillar-Enhanced Quartz Crystal Microbalance.

Ji S, Chiniforooshan Esfahani I, Yang R, Sun H J Phys Chem B. 2024; 128(41):10247-10257.

PMID: 39380463 PMC: 11492313. DOI: 10.1021/acs.jpcb.4c03393.


Thin Film Plastic Antibody-Based Microplate Assay for Human Serum Albumin Determination.

Boonsriwong W, Chunta S, Thepsimanon N, Singsanan S, Lieberzeit P Polymers (Basel). 2021; 13(11).

PMID: 34072152 PMC: 8198403. DOI: 10.3390/polym13111763.


Quartz crystal microbalance-based biosensors as rapid diagnostic devices for infectious diseases.

Lim H, Saha T, Tey B, Tan W, Ooi C Biosens Bioelectron. 2020; 168:112513.

PMID: 32889395 PMC: 7443316. DOI: 10.1016/j.bios.2020.112513.


Combined Layer/Particle Approaches in Surface Molecular Imprinting of Proteins: Signal Enhancement and Competition.

Van Ho Phan N, Sussitz H, Ladenhauf E, Pum D, Lieberzeit P Sensors (Basel). 2018; 18(1).

PMID: 29320454 PMC: 5796476. DOI: 10.3390/s18010180.


References
1.
Bossi A, Bonini F, Turner A, Piletsky S . Molecularly imprinted polymers for the recognition of proteins: the state of the art. Biosens Bioelectron. 2006; 22(6):1131-7. DOI: 10.1016/j.bios.2006.06.023. View

2.
Cakir P, Cutivet A, Resmini M, Tse Sum Bui B, Haupt K . Protein-size molecularly imprinted polymer nanogels as synthetic antibodies, by localized polymerization with multi-initiators. Adv Mater. 2012; 25(7):1048-51. DOI: 10.1002/adma.201203400. View

3.
Seidler K, Lieberzeit P, Dickert F . Application of yeast imprinting in biotechnology and process control. Analyst. 2009; 134(2):361-6. DOI: 10.1039/b809130g. View

4.
Muratsugu M, OHTA F, Miya Y, Hosokawa T, Kurosawa S, Kamo N . Quartz crystal microbalance for the detection of microgram quantities of human serum albumin: relationship between the frequency change and the mass of protein adsorbed. Anal Chem. 1993; 65(20):2933-7. DOI: 10.1021/ac00068a036. View

5.
Turner N, Jeans C, Brain K, Allender C, Hlady V, Britt D . From 3D to 2D: a review of the molecular imprinting of proteins. Biotechnol Prog. 2006; 22(6):1474-89. PMC: 2666979. DOI: 10.1021/bp060122g. View