» Articles » PMID: 25586412

A Low-cost, High-performance System for Fluorescence Lateral Flow Assays

Overview
Specialty Biotechnology
Date 2015 Jan 15
PMID 25586412
Citations 29
Authors
Affiliations
Soon will be listed here.
Abstract

We demonstrate a fluorescence lateral flow system that has excellent sensitivity and wide dynamic range. The illumination system utilizes an LED, plastic lenses and plastic and colored glass filters for the excitation and emission light. Images are collected on an iPhone 4. Several fluorescent dyes with long Stokes shifts were evaluated for their signal and nonspecific binding in lateral flow. A wide range of values for the ratio of signal to nonspecific binding was found, from 50 for R-phycoerythrin (R-PE) to 0.15 for Brilliant Violet 605. The long Stokes shift of R-PE allowed the use of inexpensive plastic filters rather than costly interference filters to block the LED light. Fluorescence detection with R-PE and absorbance detection with colloidal gold were directly compared in lateral flow using biotinylated bovine serum albumen (BSA) as the analyte. Fluorescence provided linear data over a range of 0.4-4,000 ng/mL with a 1,000-fold signal change while colloidal gold provided non-linear data over a range of 16-4,000 ng/mL with a 10-fold signal change. A comparison using human chorionic gonadotropin (hCG) as the analyte showed a similar advantage in the fluorescent system. We believe our inexpensive yet high-performance platform will be useful for providing quantitative and sensitive detection in a point-of-care setting.

Citing Articles

Portable Fluorescence Microarray Reader-Enabled Biomarker Panel Detection System for Point-of-Care Diagnosis of Lupus Nephritis.

Teymur A, Hussain I, Tang C, Saxena R, Erickson D, Wu T Micromachines (Basel). 2025; 16(2).

PMID: 40047601 PMC: 11857597. DOI: 10.3390/mi16020156.


Artificial intelligence reinforced upconversion nanoparticle-based lateral flow assay via transfer learning.

Wang W, Chen K, Ma X, Guo J Fundam Res. 2024; 3(4):544-556.

PMID: 38933552 PMC: 11197505. DOI: 10.1016/j.fmre.2022.03.025.


Accelerated Development of a COVID-19 Lateral Flow Test in an Academic Setting: Lessons Learned.

Kourentzi K, Brosamer K, Vu B, Willson R Acc Chem Res. 2024; 57(9):1372-1383.

PMID: 38590049 PMC: 11080997. DOI: 10.1021/acs.accounts.4c00075.


Glowstick-inspired smartphone-readable reporters for sensitive, multiplexed lateral flow immunoassays.

Brosamer K, Kourentzi K, Willson R, Vu B Commun Eng. 2024; 2.

PMID: 38586601 PMC: 10955955. DOI: 10.1038/s44172-023-00075-2.


The Quantitative Detection of Cystatin-C in Patient Samples Using a Colorimetric Lateral Flow Immunoassay.

Bikkarolla S, Venkatesan K, Revathy Y, Parameswaran S, Krishnakumar S, Dendukuri D Biosensors (Basel). 2024; 14(1).

PMID: 38248407 PMC: 10813198. DOI: 10.3390/bios14010030.


References
1.
Zhu H, Mavandadi S, Coskun A, Yaglidere O, Ozcan A . Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem. 2011; 83(17):6641-7. PMC: 3263930. DOI: 10.1021/ac201587a. View

2.
Juntunen E, Myyrylainen T, Salminen T, Soukka T, Pettersson K . Performance of fluorescent europium(III) nanoparticles and colloidal gold reporters in lateral flow bioaffinity assay. Anal Biochem. 2012; 428(1):31-8. DOI: 10.1016/j.ab.2012.06.005. View

3.
Choi D, Lee S, Oh Y, Bae B, Lee S, Kim S . A dual gold nanoparticle conjugate-based lateral flow assay (LFA) method for the analysis of troponin I. Biosens Bioelectron. 2010; 25(8):1999-2002. DOI: 10.1016/j.bios.2010.01.019. View

4.
Miano R, Mele G, Germani S, Bove P, Sansalone S, Pugliese P . Evaluation of a new, rapid, qualitative, one-step PSA Test for prostate cancer screening: the PSA RapidScreen test. Prostate Cancer Prostatic Dis. 2005; 8(3):219-23. DOI: 10.1038/sj.pcan.4500802. View

5.
Chan C, Sum K, Cheung K, Glatz J, Sanderson J, Hempel A . Development of a quantitative lateral-flow assay for rapid detection of fatty acid-binding protein. J Immunol Methods. 2003; 279(1-2):91-100. DOI: 10.1016/s0022-1759(03)00243-6. View