» Articles » PMID: 25537134

Exploring the Fe(III) Binding Sites of Human Serum Transferrin with EPR at 275 GHz

Overview
Publisher Springer
Specialty Biochemistry
Date 2014 Dec 25
PMID 25537134
Citations 5
Authors
Affiliations
Soon will be listed here.
Abstract

We report 275 GHz EPR spectra of human serum transferrin. At this high microwave frequency the zero-field splitting between the magnetic sublevels of the high-spin [Formula: see text] sites can be accurately determined. We find the zero-field splitting to be a sensitive probe of the structure of the transferrin iron-binding sites. Signals arising from iron bound to the transferrin N-lobe can clearly be distinguished from signals from iron bound to the C-lobe. Moreover, our spectra show that the structure of the iron site in the N-lobe is influenced by the presence and conformation of the C-lobe. The spectra of a series of N-lobe mutants altering the second-shell interaction of Arg124 with the synergistic anion carbonate reflect conformational changes induced at the iron site.

Citing Articles

Fe(III) MRI Probes Containing Phenolate or Hydroxypyridine-Appended Triamine Chelates and a Coordination Site for Bound Water.

Cineus R, Abozeid S, Sokolow G, Spernyak J, Morrow J Inorg Chem. 2023; 62(40):16513-16522.

PMID: 37748050 PMC: 11706235. DOI: 10.1021/acs.inorgchem.3c02344.


Iron-Induced Oxidative Stress in Human Diseases.

Kawabata T Cells. 2022; 11(14).

PMID: 35883594 PMC: 9324531. DOI: 10.3390/cells11142152.


Many-Body Study of Iron(III)-Bound Human Serum Transferrin.

Lee H, Weber C, Linscott E J Phys Chem Lett. 2022; 13(20):4419-4425.

PMID: 35549239 PMC: 9150111. DOI: 10.1021/acs.jpclett.2c00680.


Molecular cloning and expression analysis of Megalobrama amblycephala transferrin gene and effects of exposure to iron and infection with Aeromonas hydrophila.

Teng T, Xi B, Xie J, Chen K, Xu P, Pan L Fish Physiol Biochem. 2017; 43(4):987-997.

PMID: 28236008 DOI: 10.1007/s10695-017-0346-3.


Interactions and accumulation differences of metal(loid)s in three sea cucumber species collected from the Northern Mediterranean Sea.

Tunca E, Aydin M, Sahin U Environ Sci Pollut Res Int. 2016; 23(20):21020-21031.

PMID: 27488716 DOI: 10.1007/s11356-016-7288-7.

References
1.
Mason A, Halbrooks P, James N, Byrne S, Grady J, Chasteen N . Structural and functional consequences of the substitution of glycine 65 with arginine in the N-lobe of human transferrin. Biochemistry. 2009; 48(9):1945-53. PMC: 2693239. DOI: 10.1021/bi802254x. View

2.
Aisen P, Pinkowitz R, Leibman A . EPR and other studies of the anion-binding sites of transferrin. Ann N Y Acad Sci. 1973; 222:337-46. DOI: 10.1111/j.1749-6632.1973.tb15272.x. View

3.
Kurokawa H, Mikami B, Hirose M . Crystal structure of diferric hen ovotransferrin at 2.4 A resolution. J Mol Biol. 1995; 254(2):196-207. DOI: 10.1006/jmbi.1995.0611. View

4.
Byrne S, Mason A . Human serum transferrin: a tale of two lobes. Urea gel and steady state fluorescence analysis of recombinant transferrins as a function of pH, time, and the soluble portion of the transferrin receptor. J Biol Inorg Chem. 2009; 14(5):771-81. PMC: 2733522. DOI: 10.1007/s00775-009-0491-y. View

5.
He Q, Mason A, Lyons B, Tam B, Nguyen V, MacGillivray R . Spectral and metal-binding properties of three single-point tryptophan mutants of the human transferrin N-lobe. Biochem J. 2001; 354(Pt 2):423-9. PMC: 1221671. DOI: 10.1042/0264-6021:3540423. View