» Articles » PMID: 25535549

A Heterogeneous Thermal Environment Enables Remarkable Behavioral Thermoregulation in Uta Stansburiana

Overview
Journal Ecol Evol
Date 2014 Dec 24
PMID 25535549
Citations 13
Authors
Affiliations
Soon will be listed here.
Abstract

Ectotherms can attain preferred body temperatures by selecting specific temperature microhabitats within a varied thermal environment. The side-blotched lizard, Uta stansburiana may employ microhabitat selection to thermoregulate behaviorally. It is unknown to what degree habitat structural complexity provides thermal microhabitats for thermoregulation. Thermal microhabitat structure, lizard temperature, and substrate preference were simultaneously evaluated using thermal imaging. A broad range of microhabitat temperatures was available (mean range of 11°C within 1-2 m(2)) while mean lizard temperature was between 36°C and 38°C. Lizards selected sites that differed significantly from the mean environmental temperature, indicating behavioral thermoregulation, and maintained a temperature significantly above that of their perch (mean difference of 2.6°C). Uta's thermoregulatory potential within a complex thermal microhabitat structure suggests that a warming trend may prove advantageous, rather than detrimental for this population.

Citing Articles

Habitat conservation enhances the resilience of the lizard Liolaemus cuyumhue to high summer temperatures.

Brizio M, Cabezas-Cartes F, Javier Avila L, Boretto J Sci Rep. 2025; 15(1):3992.

PMID: 39893237 PMC: 11787314. DOI: 10.1038/s41598-024-83845-y.


Novel method to investigate thermal exchange rates in small, terrestrial ectotherms: A proof-of-concept on the gecko Tarentola mauritanica.

Mochales-Riano G, Barroso F, Marques V, Telea A, Sannolo M, Rato C PLoS One. 2024; 19(12):e0316283.

PMID: 39724253 PMC: 11670986. DOI: 10.1371/journal.pone.0316283.


Seasonal, environmental and individual effects on hypoxia tolerance of eastern sand darter ().

Firth B, Craig P, Drake D, Power M Conserv Physiol. 2023; 11(1):coad008.

PMID: 36926473 PMC: 10012177. DOI: 10.1093/conphys/coad008.


Preying dangerously: black widow spider venom resistance in sympatric lizards.

Thill V, Moniz H, Teglas M, Wasley M, Feldman C R Soc Open Sci. 2022; 9(10):221012.

PMID: 36277837 PMC: 9579766. DOI: 10.1098/rsos.221012.


Habitat heterogeneity affects the thermal ecology of an endangered lizard.

Gaudenti N, Nix E, Maier P, Westphal M, Taylor E Ecol Evol. 2021; 11(21):14843-14856.

PMID: 34765145 PMC: 8571645. DOI: 10.1002/ece3.8170.


References
1.
Angilletta Jr M, Sears M, Pringle R . Spatial dynamics of nesting behavior: lizards shift microhabitats to construct nests with beneficial thermal properties. Ecology. 2009; 90(10):2933-9. DOI: 10.1890/08-2224.1. View

2.
Adolph S, Porter W . Temperature, activity, and lizard life histories. Am Nat. 2009; 142(2):273-95. DOI: 10.1086/285538. View

3.
Fox S . NATURAL SELECTION ON MORPHOLOGICAL PHENOTYPES OF THE LIZARD UTA STANSBURIANA. Evolution. 2017; 29(1):95-107. DOI: 10.1111/j.1558-5646.1975.tb00818.x. View

4.
Munoz M, Stimola M, Algar A, Conover A, Rodriguez A, Landestoy M . Evolutionary stasis and lability in thermal physiology in a group of tropical lizards. Proc Biol Sci. 2014; 281(1778):20132433. PMC: 3906933. DOI: 10.1098/rspb.2013.2433. View

5.
Huey R, Slatkin M . Cost and benefits of lizard thermoregulation. Q Rev Biol. 1976; 51(3):363-84. DOI: 10.1086/409470. View