» Articles » PMID: 25520208

QSAR As a Random Event: a Case of NOAEL

Overview
Publisher Springer
Date 2014 Dec 19
PMID 25520208
Citations 12
Authors
Affiliations
Soon will be listed here.
Abstract

Quantitative structure-activity relationships (QSAR) for no observed adverse effect levels (NOAEL, mmol/kg/day, in logarithmic units) are suggested. Simplified molecular input line entry systems (SMILES) were used for molecular structure representation. Monte Carlo method was used for one-variable models building up for three different splits into the "visible" training set and "invisible" validation. The statistical quality of the models for three random splits are the following: split 1 n = 180, r (2) = 0.718, q (2) = 0.712, s = 0.403, F = 454 (training set); n = 17, r (2) = 0.544, s = 0.367 (calibration set); n = 21, r (2) = 0.61, s = 0.44, r m (2) = 0.61 (validation set); split 2 n = 169, r (2) = 0.711, q (2) = 0.705, s = 0.409, F = 411 (training set); n = 27, r (2) = 0.512, s = 0.461 (calibration set); n = 22, r (2) = 0.669, s = 0.360, r m (2) = 0.63 (validation set); split 3 n = 172, r (2) = 0.679, q (2) = 0.672, s = 0.420, F = 360 (training set); n = 19, r (2) = 0.617, s = 0.582 (calibration set); n = 21, r (2) = 0.627, s = 0.367, r m (2) = 0.54 (validation set). All models are built according to OCED principles.

Citing Articles

Reproducibility of organ-level effects in repeat dose animal studies.

Paul Friedman K, Foster M, Pham L, Feshuk M, Watford S, Wambaugh J Comput Toxicol. 2023; 28:1-17.

PMID: 37990691 PMC: 10659077. DOI: 10.1016/j.comtox.2023.100287.


Cheminformatics and Machine Learning Approaches to Assess Aquatic Toxicity Profiles of Fullerene Derivatives.

Fjodorova N, Novic M, Venko K, Rasulev B, Turker Sacan M, Tugcu G Int J Mol Sci. 2023; 24(18).

PMID: 37762462 PMC: 10531479. DOI: 10.3390/ijms241814160.


How fullerene derivatives (FDs) act on therapeutically important targets associated with diabetic diseases.

Fjodorova N, Novic M, Venko K, Drgan V, Rasulev B, Turker Sacan M Comput Struct Biotechnol J. 2022; 20:913-924.

PMID: 35242284 PMC: 8861571. DOI: 10.1016/j.csbj.2022.02.006.


In Silico Models for Repeated-Dose Toxicity (RDT): Prediction of the No Observed Adverse Effect Level (NOAEL) and Lowest Observed Adverse Effect Level (LOAEL) for Drugs.

Pizzo F, Gadaleta D, Benfenati E Methods Mol Biol. 2022; 2425:241-258.

PMID: 35188636 DOI: 10.1007/978-1-0716-1960-5_11.


Structure-based QSAR Models to Predict Repeat Dose Toxicity Points of Departure.

Pradeep P, Paul Friedman K, Judson R Comput Toxicol. 2021; 16(November 2020).

PMID: 34017928 PMC: 8128699. DOI: 10.1016/j.comtox.2020.100139.


References
1.
Toropova A, Toropov A, Benfenati E, Gini G, Leszczynska D, Leszczynski J . CORAL: quantitative structure-activity relationship models for estimating toxicity of organic compounds in rats. J Comput Chem. 2011; 32(12):2727-33. DOI: 10.1002/jcc.21848. View

2.
Garro Martinez J, Duchowicz P, Estrada M, Zamarbide G, Castro E . QSAR study and molecular design of open-chain enaminones as anticonvulsant agents. Int J Mol Sci. 2012; 12(12):9354-68. PMC: 3257134. DOI: 10.3390/ijms12129354. View

3.
Park Y, Cho M . A New Way in Deciding NOAEL Based on the Findings from GLP-Toxicity Test. Toxicol Res. 2013; 27(3):133-5. PMC: 3834376. DOI: 10.5487/TR.2011.27.3.133. View

4.
Toropov A, Toropova A, Puzyn T, Benfenati E, Gini G, Leszczynska D . QSAR as a random event: modeling of nanoparticles uptake in PaCa2 cancer cells. Chemosphere. 2013; 92(1):31-7. DOI: 10.1016/j.chemosphere.2013.03.012. View

5.
Mazzatorta P, Estevez M, Coulet M, Schilter B . Modeling oral rat chronic toxicity. J Chem Inf Model. 2008; 48(10):1949-54. DOI: 10.1021/ci8001974. View