» Articles » PMID: 25493338

The Evolution of Photosynthesis in Chromist Algae Through Serial Endosymbioses

Overview
Journal Nat Commun
Specialty Biology
Date 2014 Dec 11
PMID 25493338
Citations 65
Authors
Affiliations
Soon will be listed here.
Abstract

Chromist algae include diverse photosynthetic organisms of great ecological and social importance. Despite vigorous research efforts, a clear understanding of how various chromists acquired photosynthetic organelles has been complicated by conflicting phylogenetic results, along with an undetermined number and pattern of endosymbioses, and the horizontal movement of genes that accompany them. We apply novel statistical approaches to assess impacts of endosymbiotic gene transfer on three principal chromist groups at the heart of long-standing controversies. Our results provide robust support for acquisitions of photosynthesis through serial endosymbioses, beginning with the adoption of a red alga by cryptophytes, then a cryptophyte by the ancestor of ochrophytes, and finally an ochrophyte by the ancestor of haptophytes. Resolution of how chromist algae are related through endosymbioses provides a framework for unravelling the further reticulate history of red algal-derived plastids, and for clarifying evolutionary processes that gave rise to eukaryotic photosynthetic diversity.

Citing Articles

Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes.

Santana-Molina C, Williams T, Snel B, Spang A Nat Ecol Evol. 2025; .

PMID: 40033103 DOI: 10.1038/s41559-025-02648-0.


Structural insights into the assembly and energy transfer of haptophyte photosystem I-light-harvesting supercomplex.

He F, Zhao L, Qu X, Li K, Guo J, Zhao F Proc Natl Acad Sci U S A. 2024; 121(50):e2413678121.

PMID: 39642204 PMC: 11648859. DOI: 10.1073/pnas.2413678121.


Plastid translocon recycling in dinoflagellates demonstrates the portability of complex plastids between hosts.

Lewis W, Paris G, Beedessee G, Koreny L, Flores V, Dendooven T Curr Biol. 2024; 34(23):5494-5506.e3.

PMID: 39571577 PMC: 7617431. DOI: 10.1016/j.cub.2024.10.034.


Adaptations and metabolic evolution of myzozoan protists across diverse lifestyles and environments.

Waller R, Carruthers V Microbiol Mol Biol Rev. 2024; 88(4):e0019722.

PMID: 39387588 PMC: 11653781. DOI: 10.1128/mmbr.00197-22.


Unraveling the evolutionary trajectory of LHCI in red-lineage algae: Conservation, diversification, and neolocalization.

Kumazawa M, Ifuku K iScience. 2024; 27(10):110897.

PMID: 39386759 PMC: 11462038. DOI: 10.1016/j.isci.2024.110897.


References
1.
Penny D, McComish B, Charleston M, Hendy M . Mathematical elegance with biochemical realism: the covarion model of molecular evolution. J Mol Evol. 2001; 53(6):711-23. DOI: 10.1007/s002390010258. View

2.
Timmis J, Ayliffe M, Huang C, Martin W . Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet. 2004; 5(2):123-35. DOI: 10.1038/nrg1271. View

3.
Lockhart P, Novis P, Milligan B, Riden J, Rambaut A, Larkum T . Heterotachy and tree building: a case study with plastids and eubacteria. Mol Biol Evol. 2005; 23(1):40-5. DOI: 10.1093/molbev/msj005. View

4.
Petersen J, Teich R, Brinkmann H, Cerff R . A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J Mol Evol. 2006; 62(2):143-57. DOI: 10.1007/s00239-004-0305-3. View

5.
Shalchian-Tabrizi K, Skanseng M, Ronquist F, Klaveness D, Bachvaroff T, Delwiche C . Heterotachy processes in rhodophyte-derived secondhand plastid genes: Implications for addressing the origin and evolution of dinoflagellate plastids. Mol Biol Evol. 2006; 23(8):1504-15. DOI: 10.1093/molbev/msl011. View