» Articles » PMID: 25489571

Regulation of NFATc1 in Osteoclast Differentiation

Overview
Journal J Bone Metab
Date 2014 Dec 10
PMID 25489571
Citations 243
Authors
Affiliations
Soon will be listed here.
Abstract

Osteoclasts are unique cells that degrade the bone matrix. These large multinucleated cells differentiate from the monocyte/macrophage lineage upon stimulation by two essential cytokines, macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor-kappa B (NF-κB) ligand (RANKL). Activation of transcription factors such as microphthalmia transcription factor (MITF), c-Fos, NF-κB, and nuclear factor-activated T cells c1 (NFATc1) is required for sufficient osteoclast differentiation. In particular, NFATc1 plays the role of a master transcription regulator of osteoclast differentiation. To date, several mechanisms, including transcription, methylation, ubiquitination, acetylation, and non-coding RNAs, have been shown to regulate expression and activation of NFATc1. In this review, we have summarized the various mechanisms that control NFATc1 regulation during osteoclast differentiation.

Citing Articles

Arcyriaflavin A Alleviates Osteoporosis by Suppressing RANKL-Induced Osteoclastogenesis.

Zhu M, Xu M, Bertheloot D, Brom V, Sieberath A, Salber J Int J Mol Sci. 2025; 26(5).

PMID: 40076762 PMC: 11899857. DOI: 10.3390/ijms26052141.


Network Pharmacology Analysis and Biological Validation Systemically Identified the Active Ingredients and Molecular Targets of Kudzu Root on Osteoporosis.

Liu Z, Zhang B, Kwok K, Dong X, Wong K Int J Mol Sci. 2025; 26(3).

PMID: 39940967 PMC: 11818621. DOI: 10.3390/ijms26031202.


Ketogenic diet and β-hydroxybutyrate in osteoporosis: current progress and controversy.

Luo C, Dai Z, He W, He Y, Yang P, Huang M Front Nutr. 2025; 12:1508695.

PMID: 39917743 PMC: 11798809. DOI: 10.3389/fnut.2025.1508695.


A Mechanically Stimulated Co-culture in 3-Dimensional Composite Scaffolds Promotes Osteogenic and Anti-osteoclastogenic Activity and M2 Macrophage Polarization.

Kontogianni G, Loukelis K, Bonatti A, Batoni E, De Maria C, Vozzi G Biomater Res. 2025; 29:0135.

PMID: 39911306 PMC: 11794764. DOI: 10.34133/bmr.0135.


Targeting TRPC channels for control of arthritis-induced bone erosion.

Ray S, McCall J, Tian J, Jeon J, Douglas A, Tyler K Sci Adv. 2025; 11(3):eabm9843.

PMID: 39813349 PMC: 11734723. DOI: 10.1126/sciadv.abm9843.


References
1.
Jang H, Shin J, Park D, Hong J, Yoon K, Ko R . Inactivation of glycogen synthase kinase-3β is required for osteoclast differentiation. J Biol Chem. 2011; 286(45):39043-50. PMC: 3234729. DOI: 10.1074/jbc.M111.256768. View

2.
Koga T, Matsui Y, Asagiri M, Kodama T, de Crombrugghe B, Nakashima K . NFAT and Osterix cooperatively regulate bone formation. Nat Med. 2005; 11(8):880-5. DOI: 10.1038/nm1270. View

3.
Yasui T, Hirose J, Aburatani H, Tanaka S . Epigenetic regulation of osteoclast differentiation. Ann N Y Acad Sci. 2011; 1240:7-13. DOI: 10.1111/j.1749-6632.2011.06245.x. View

4.
Hogan P, Chen L, Nardone J, Rao A . Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev. 2003; 17(18):2205-32. DOI: 10.1101/gad.1102703. View

5.
Lee Y, Kim H, Park C, Kim Y, Lee H, Kim J . MicroRNA-124 regulates osteoclast differentiation. Bone. 2013; 56(2):383-9. DOI: 10.1016/j.bone.2013.07.007. View