» Articles » PMID: 25489251

Peripheral Nerve Conduits: Technology Update

Overview
Publisher Dove Medical Press
Date 2014 Dec 10
PMID 25489251
Citations 88
Authors
Affiliations
Soon will be listed here.
Abstract

Peripheral nerve injury is a worldwide clinical problem which could lead to loss of neuronal communication along sensory and motor nerves between the central nervous system (CNS) and the peripheral organs and impairs the quality of life of a patient. The primary requirement for the treatment of complete lesions is a tension-free, end-to-end repair. When end-to-end repair is not possible, peripheral nerve grafts or nerve conduits are used. The limited availability of autografts, and drawbacks of the allografts and xenografts like immunological reactions, forced the researchers to investigate and develop alternative approaches, mainly nerve conduits. In this review, recent information on the various types of conduit materials (made of biological and synthetic polymers) and designs (tubular, fibrous, and matrix type) are being presented.

Citing Articles

The Potential Role of Adipose-Derived Stem Cells in Regeneration of Peripheral Nerves.

Mohan S, Priya S, Tawfig N, Padmanabhan V, Babiker R, Palaniappan A Neurol Int. 2025; 17(2).

PMID: 39997654 PMC: 11858299. DOI: 10.3390/neurolint17020023.


3D printed biodegradable hydrogel-based multichannel nerve conduits mimicking peripheral nerve fascicules.

Maeng W, Lee Y, Chen S, Kim K, Sung D, Tseng W Mater Today Bio. 2025; 31:101514.

PMID: 39944532 PMC: 11815286. DOI: 10.1016/j.mtbio.2025.101514.


Longitudinally aligned inner-patterned silk fibroin conduits for peripheral nerve regeneration.

Escobar A, Carvalho M, Silva T, Reis R, Oliveira J In Vitro Model. 2025; 2(5):195-205.

PMID: 39872172 PMC: 11756464. DOI: 10.1007/s44164-023-00050-3.


From innovation to clinic: Emerging strategies harnessing electrically conductive polymers to enhance electrically stimulated peripheral nerve repair.

Borah R, Diez Clarke D, Upadhyay J, Monaghan M Mater Today Bio. 2025; 30():101415.

PMID: 39816667 PMC: 11733191. DOI: 10.1016/j.mtbio.2024.101415.


FRESH extrusion 3D printing of type-1 collagen hydrogels photocrosslinked using ruthenium.

Steiner R, Buchen J, Phillips E, Fellin C, Yuan X, Jariwala S PLoS One. 2025; 20(1):e0317350.

PMID: 39792905 PMC: 11723599. DOI: 10.1371/journal.pone.0317350.


References
1.
Krekoski C, Neubauer D, Graham J, Muir D . Metalloproteinase-dependent predegeneration in vitro enhances axonal regeneration within acellular peripheral nerve grafts. J Neurosci. 2002; 22(23):10408-15. PMC: 6758746. View

2.
Moroder P, Runge M, Wang H, Ruesink T, Lu L, Spinner R . Material properties and electrical stimulation regimens of polycaprolactone fumarate-polypyrrole scaffolds as potential conductive nerve conduits. Acta Biomater. 2010; 7(3):944-53. PMC: 3031729. DOI: 10.1016/j.actbio.2010.10.013. View

3.
Gamez E, Goto Y, Nagata K, Iwaki T, Sasaki T, Matsuda T . Photofabricated gelatin-based nerve conduits: nerve tissue regeneration potentials. Cell Transplant. 2004; 13(5):549-64. DOI: 10.3727/000000004783983639. View

4.
Gupta D, Tator C, Shoichet M . Fast-gelling injectable blend of hyaluronan and methylcellulose for intrathecal, localized delivery to the injured spinal cord. Biomaterials. 2005; 27(11):2370-9. DOI: 10.1016/j.biomaterials.2005.11.015. View

5.
Siemionow M, Brzezicki G . Chapter 8: Current techniques and concepts in peripheral nerve repair. Int Rev Neurobiol. 2009; 87:141-72. DOI: 10.1016/S0074-7742(09)87008-6. View