» Articles » PMID: 25485098

A Novel Mouse Model of Creatine Transporter Deficiency

Overview
Journal F1000Res
Date 2014 Dec 9
PMID 25485098
Citations 23
Authors
Affiliations
Soon will be listed here.
Abstract

Mutations in the creatine (Cr) transporter (CrT) gene lead to cerebral creatine deficiency syndrome-1 (CCDS1), an X-linked metabolic disorder characterized by cerebral Cr deficiency causing intellectual disability, seizures, movement  and behavioral disturbances, language and speech impairment ( OMIM #300352). CCDS1 is still an untreatable pathology that can be very invalidating for patients and caregivers. Only two murine models of CCDS1, one of which is an ubiquitous knockout mouse, are currently available to study the possible mechanisms underlying the pathologic phenotype of CCDS1 and to develop therapeutic strategies. Given the importance of validating phenotypes and efficacy of promising treatments in more than one mouse model we have generated a new murine model of CCDS1 obtained by ubiquitous deletion of 5-7 exons in the Slc6a8 gene. We showed a remarkable Cr depletion in the murine brain tissues and cognitive defects, thus resembling the key features of human CCDS1. These results confirm that CCDS1 can be well modeled in mice. This CrT (-/y) murine model will provide a new tool for increasing the relevance of preclinical studies to the human disease.

Citing Articles

Creatine transporter (SLC6A8) knockout mice exhibit reduced muscle performance, disrupted mitochondrial Ca homeostasis, and severe muscle atrophy.

Pertici I, DAngelo D, Vecellio Reane D, Reconditi M, Morotti I, Putignano E Cell Death Dis. 2025; 16(1):99.

PMID: 39952955 PMC: 11828924. DOI: 10.1038/s41419-025-07381-x.


Rescue of myocytes and locomotion through intracisternal gene therapy in a rat model of creatine transporter deficiency.

Fernandes-Pires G, Azevedo M, Lanzillo M, Roux-Petronelli C, Binz P, Cudalbu C Mol Ther Methods Clin Dev. 2024; 32(2):101251.

PMID: 38745894 PMC: 11091509. DOI: 10.1016/j.omtm.2024.101251.


Epigenetic alterations in creatine transporter deficiency: a new marker for dodecyl creatine ester therapeutic efficacy monitoring.

Broca-Brisson L, Disdier C, Harati R, Hamoudi R, Mabondzo A Front Neurosci. 2024; 18:1362497.

PMID: 38694899 PMC: 11062253. DOI: 10.3389/fnins.2024.1362497.


Maintaining energy provision in the heart: the creatine kinase system in ischaemia-reperfusion injury and chronic heart failure.

Lygate C Clin Sci (Lond). 2024; 138(8):491-514.

PMID: 38639724 PMC: 11040329. DOI: 10.1042/CS20230616.


Deciphering neuronal deficit and protein profile changes in human brain organoids from patients with creatine transporter deficiency.

Broca-Brisson L, Harati R, Disdier C, Mozner O, Gaston-Breton R, Maiza A Elife. 2023; 12.

PMID: 37830910 PMC: 10575631. DOI: 10.7554/eLife.88459.


References
1.
Katz D, Berger-Sweeney J, Eubanks J, Justice M, Neul J, Pozzo-Miller L . Preclinical research in Rett syndrome: setting the foundation for translational success. Dis Model Mech. 2012; 5(6):733-45. PMC: 3484856. DOI: 10.1242/dmm.011007. View

2.
van de Kamp J, Mancini G, Salomons G . X-linked creatine transporter deficiency: clinical aspects and pathophysiology. J Inherit Metab Dis. 2014; 37(5):715-33. DOI: 10.1007/s10545-014-9713-8. View

3.
Russell A, Ghobrial L, Wright C, Lamon S, Brown E, Kon M . Creatine transporter (SLC6A8) knockout mice display an increased capacity for in vitro creatine biosynthesis in skeletal muscle. Front Physiol. 2014; 5:314. PMC: 4144344. DOI: 10.3389/fphys.2014.00314. View

4.
Tang S, Silva F, Tsark W, Mann J . A Cre/loxP-deleter transgenic line in mouse strain 129S1/SvImJ. Genesis. 2002; 32(3):199-202. DOI: 10.1002/gene.10030. View

5.
Acosta M, Kalloniatis M, Christie D . Creatine transporter localization in developing and adult retina: importance of creatine to retinal function. Am J Physiol Cell Physiol. 2005; 289(4):C1015-23. DOI: 10.1152/ajpcell.00137.2005. View