» Articles » PMID: 25452571

Probabilistic Maps of Visual Topography in Human Cortex

Overview
Journal Cereb Cortex
Specialty Neurology
Date 2014 Dec 3
PMID 25452571
Citations 301
Authors
Affiliations
Soon will be listed here.
Abstract

The human visual system contains an array of topographically organized regions. Identifying these regions in individual subjects is a powerful approach to group-level statistical analysis, but this is not always feasible. We addressed this limitation by generating probabilistic maps of visual topographic areas in 2 standardized spaces suitable for use with adult human brains. Using standard fMRI paradigms, we identified 25 topographic maps in a large population of individual subjects (N = 53) and transformed them into either a surface- or volume-based standardized space. Here, we provide a quantitative characterization of the inter-subject variability within and across visual regions, including the likelihood that a given point would be classified as a part of any region (full probability map) and the most probable region for any given point (maximum probability map). By evaluating the topographic organization across the whole of visual cortex, we provide new information about the organization of individual visual field maps and large-scale biases in visual field coverage. Finally, we validate each atlas for use with independent subjects. Overall, the probabilistic atlases quantify the variability of topographic representations in human cortex and provide a useful reference for comparing data across studies that can be transformed into these standard spaces.

Citing Articles

Movies reveal the fine-grained organization of infant visual cortex.

Ellis C, Yates T, Arcaro M, Turk-Browne N Elife. 2025; 12.

PMID: 40047799 PMC: 11884787. DOI: 10.7554/eLife.92119.


Decoding Visual Spatial Attention Control.

Meyyappan Sr E, Meyyappan S, Rajan A, Yang Q, Mangun G, Ding M eNeuro. 2025; 12(3).

PMID: 39947905 PMC: 11875837. DOI: 10.1523/ENEURO.0512-24.2025.


Coordinating multiple mental faculties during learning.

Luo X, Mok R, Roads B, Love B Sci Rep. 2025; 15(1):5319.

PMID: 39939457 PMC: 11822098. DOI: 10.1038/s41598-025-89732-4.


Visual Tract Integrity Before and After Gene Therapy in Congenital Achromatopsia.

Abramovitch H, Bick A, Guy N, Elul D, Mckyton A, Banin E Transl Vis Sci Technol. 2025; 14(2):9.

PMID: 39908132 PMC: 11804893. DOI: 10.1167/tvst.14.2.9.


Functional Connectivity of the Scene Processing Network at Rest Does Not Reliably Predict Human Behavior on Scene Processing Tasks.

Watson D, Andrews T eNeuro. 2025; 12(2).

PMID: 39890456 PMC: 11820959. DOI: 10.1523/ENEURO.0375-24.2024.


References
1.
Wade A, Brewer A, Rieger J, Wandell B . Functional measurements of human ventral occipital cortex: retinotopy and colour. Philos Trans R Soc Lond B Biol Sci. 2002; 357(1424):963-73. PMC: 1693014. DOI: 10.1098/rstb.2002.1108. View

2.
Konen C, Kastner S . Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J Neurosci. 2008; 28(33):8361-75. PMC: 2685070. DOI: 10.1523/JNEUROSCI.1930-08.2008. View

3.
Abdollahi R, Kolster H, Glasser M, Robinson E, Coalson T, Dierker D . Correspondences between retinotopic areas and myelin maps in human visual cortex. Neuroimage. 2014; 99:509-24. PMC: 4121090. DOI: 10.1016/j.neuroimage.2014.06.042. View

4.
Tootell R, Hadjikhani N, Hall E, Marrett S, Vanduffel W, Vaughan J . The retinotopy of visual spatial attention. Neuron. 1999; 21(6):1409-22. DOI: 10.1016/s0896-6273(00)80659-5. View

5.
Cohen A, Fair D, Dosenbach N, Miezin F, Dierker D, Van Essen D . Defining functional areas in individual human brains using resting functional connectivity MRI. Neuroimage. 2008; 41(1):45-57. PMC: 2705206. DOI: 10.1016/j.neuroimage.2008.01.066. View