» Articles » PMID: 25430059

Paramagnetic Relaxation Enhancement of Membrane Proteins by Incorporation of the Metal-chelating Unnatural Amino Acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic Acid (HQA)

Overview
Journal J Biomol NMR
Publisher Springer
Date 2014 Nov 29
PMID 25430059
Citations 15
Authors
Affiliations
Soon will be listed here.
Abstract

The use of paramagnetic constraints in protein NMR is an active area of research because of the benefits of long-range distance measurements (>10 Å). One of the main issues in successful execution is the incorporation of a paramagnetic metal ion into diamagnetic proteins. The most common metal ion tags are relatively long aliphatic chains attached to the side chain of a selected cysteine residue with a chelating group at the end where it can undergo substantial internal motions, decreasing the accuracy of the method. An attractive alternative approach is to incorporate an unnatural amino acid that binds metal ions at a specific site on the protein using the methods of molecular biology. Here we describe the successful incorporation of the unnatural amino acid 2-amino-3-(8-hydroxyquinolin-3-yl)propanoic acid (HQA) into two different membrane proteins by heterologous expression in E. coli. Fluorescence and NMR experiments demonstrate complete replacement of the natural amino acid with HQA and stable metal chelation by the mutated proteins. Evidence of site-specific intra- and inter-molecular PREs by NMR in micelle solutions sets the stage for the use of HQA incorporation in solid-state NMR structure determinations of membrane proteins in phospholipid bilayers.

Citing Articles

Sparse pseudocontact shift NMR data obtained from a non-canonical amino acid-linked lanthanide tag improves integral membrane protein structure prediction.

Ledwitch K, Kunze G, McKinney J, Okwei E, Larochelle K, Pankewitz L J Biomol NMR. 2023; 77(3):69-82.

PMID: 37016190 PMC: 10443207. DOI: 10.1007/s10858-023-00412-9.


A Chemical Biology Primer for NMR Spectroscopists.

Clark E, Sievers E, Debelouchina G J Magn Reson Open. 2022; 10-11.

PMID: 35494416 PMC: 9053072. DOI: 10.1016/j.jmro.2022.100044.


Paramagnetic Chemical Probes for Studying Biological Macromolecules.

Miao Q, Nitsche C, Orton H, Overhand M, Otting G, Ubbink M Chem Rev. 2022; 122(10):9571-9642.

PMID: 35084831 PMC: 9136935. DOI: 10.1021/acs.chemrev.1c00708.


NMR Methods for Structural Characterization of Protein-Protein Complexes.

Purslow J, Khatiwada B, Bayro M, Venditti V Front Mol Biosci. 2020; 7:9.

PMID: 32047754 PMC: 6997237. DOI: 10.3389/fmolb.2020.00009.


A Double-Armed, Hydrophilic Transition Metal Complex as a Paramagnetic NMR Probe.

Miao Q, Liu W, Kock T, Blok A, Timmer M, Overhand M Angew Chem Int Ed Engl. 2019; 58(37):13093-13100.

PMID: 31314159 PMC: 6771572. DOI: 10.1002/anie.201906049.


References
1.
Wien R, Morrisett J, McConnell H . Spin-label-induced nuclear relaxation. Distances between bound saccharides, histidine-15, and tryptophan-123 on lysozyme in solution. Biochemistry. 1972; 11(20):3707-16. DOI: 10.1021/bi00770a008. View

2.
McConnell H, McFarland B . Physics and chemistry of spin labels. Q Rev Biophys. 1970; 3(1):91-136. DOI: 10.1017/s003358350000442x. View

3.
Nguyen T, Ozawa K, Stanton-Cook M, Barrow R, Huber T, Otting G . Generation of pseudocontact shifts in protein NMR spectra with a genetically encoded cobalt(II)-binding amino acid. Angew Chem Int Ed Engl. 2011; 50(3):692-4. DOI: 10.1002/anie.201005672. View

4.
Clore G . Seeing the invisible by paramagnetic and diamagnetic NMR. Biochem Soc Trans. 2013; 41(6):1343-54. PMC: 4155411. DOI: 10.1042/BST20130232. View

5.
Park S, Casagrande F, Cho L, Albrecht L, Opella S . Interactions of interleukin-8 with the human chemokine receptor CXCR1 in phospholipid bilayers by NMR spectroscopy. J Mol Biol. 2011; 414(2):194-203. PMC: 3236022. DOI: 10.1016/j.jmb.2011.08.025. View