Loshchinina E, Vetchinkina E, Kupryashina M
Biomimetics (Basel). 2023; 8(1).
PMID: 36648787
PMC: 9844505.
DOI: 10.3390/biomimetics8010001.
Sebesta M, Vojtkova H, Cyprichova V, Ingle A, Urik M, Kolencik M
Int J Mol Sci. 2023; 24(1).
PMID: 36613746
PMC: 9820721.
DOI: 10.3390/ijms24010304.
Osorio Echavarria J, Gomez Vanegas N, Ossa Orozco C
Heliyon. 2022; 8(9):e10258.
PMID: 36060464
PMC: 9437809.
DOI: 10.1016/j.heliyon.2022.e10258.
Osorio-Echavarria J, Osorio-Echavarria J, Ossa-Orozco C, Gomez-Vanegas N
Sci Rep. 2021; 11(1):3842.
PMID: 33589657
PMC: 7884706.
DOI: 10.1038/s41598-021-82514-8.
Chandankere R, Chelliah J, Subban K, Shanadrahalli V, Parvez A, Zabed H
Front Bioeng Biotechnol. 2020; 8:95.
PMID: 32154230
PMC: 7047737.
DOI: 10.3389/fbioe.2020.00095.
Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi .
Kobashigawa J, Robles C, Martinez Ricci M, Carmaran C
Saudi J Biol Sci. 2019; 26(7):1331-1337.
PMID: 31762592
PMC: 6864291.
DOI: 10.1016/j.sjbs.2018.09.006.
Synthesis of silver nanoparticles with antimicrobial and anti-adherence activities against multidrug-resistant isolates from .
Shaker M, Shaaban M
J Taibah Univ Med Sci. 2019; 12(4):291-297.
PMID: 31435254
PMC: 6694881.
DOI: 10.1016/j.jtumed.2017.02.008.
Engineered magnetosomes fused to functional molecule (protein A) provide a highly effective alternative to commercial immunomagnetic beads.
Xu J, Liu L, He J, Ma S, Li S, Wang Z
J Nanobiotechnology. 2019; 17(1):37.
PMID: 30841927
PMC: 6402170.
DOI: 10.1186/s12951-019-0469-z.
Biogenic synthesis of multifunctional silver nanoparticles from Rhodotorula glutinis and Rhodotorula mucilaginosa: antifungal, catalytic and cytotoxicity activities.
Cunha F, Cunha M, da Frota S, Mallmann E, Freire T, Costa L
World J Microbiol Biotechnol. 2018; 34(9):127.
PMID: 30084085
DOI: 10.1007/s11274-018-2514-8.
Novel Weed-Extracted Silver Nanoparticles and Their Antibacterial Appraisal against a Rare Bacterium from River and Sewage Treatment Plan.
Syafiuddin A, Hadibarata T, Kueh A, Salim M
Nanomaterials (Basel). 2017; 8(1).
PMID: 29278389
PMC: 5791096.
DOI: 10.3390/nano8010009.
Biogenic Synthesis of Metal Nanoparticles Using a Biosurfactant Extracted from Corn and Their Antimicrobial Properties.
Gomez-Grana S, Perez-Ameneiro M, Vecino X, Pastoriza-Santos I, Perez-Juste J, Cruz J
Nanomaterials (Basel). 2017; 7(6).
PMID: 28587297
PMC: 5485786.
DOI: 10.3390/nano7060139.
Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis.
Ottoni C, Simoes M, Fernandes S, Dos Santos J, da Silva E, de Souza R
AMB Express. 2017; 7(1):31.
PMID: 28144889
PMC: 5285291.
DOI: 10.1186/s13568-017-0332-2.
Virulency of novel nanolarvicide from Trichoderma atroviride against Aedes aegypti (Linn.): a CLSM analysis.
Singh G, Prakash S
Environ Sci Pollut Res Int. 2015; 22(16):12559-65.
PMID: 25907629
DOI: 10.1007/s11356-015-4531-6.
Biogenic silver nanoparticles associated with silver chloride nanoparticles (Ag@AgCl) produced by laccase from Trametes versicolor.
Duran N, Cuevas R, Cordi L, Rubilar O, Diez M
Springerplus. 2014; 3:645.
PMID: 25485188
PMC: 4237688.
DOI: 10.1186/2193-1801-3-645.
Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L.
Sundaravadivelan C, Padmanabhan M
Environ Sci Pollut Res Int. 2013; 21(6):4624-33.
PMID: 24352539
DOI: 10.1007/s11356-013-2358-6.
Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity.
Hamedi S, Shojaosadati S, Shokrollahzadeh S, Hashemi-Najafabadi S
World J Microbiol Biotechnol. 2013; 30(2):693-704.
PMID: 24068530
DOI: 10.1007/s11274-013-1417-y.