» Articles » PMID: 25424553

Multiple Haplotype-resolved Genomes Reveal Population Patterns of Gene and Protein Diplotypes

Overview
Journal Nat Commun
Specialty Biology
Date 2014 Nov 27
PMID 25424553
Citations 19
Authors
Affiliations
Soon will be listed here.
Abstract

To fully understand human biology and link genotype to phenotype, the phase of DNA variants must be known. Here we present a comprehensive analysis of haplotype-resolved genomes to assess the nature and variation of haplotypes and their pairs, diplotypes, in European population samples. We use a set of 14 haplotype-resolved genomes generated by fosmid clone-based sequencing, complemented and expanded by up to 372 statistically resolved genomes from the 1000 Genomes Project. We find immense diversity of both haploid and diploid gene forms, up to 4.1 and 3.9 million corresponding to 249 and 235 per gene on average. Less than 15% of autosomal genes have a predominant form. We describe a 'common diplotypic proteome', a set of 4,269 genes encoding two different proteins in over 30% of genomes. We show moreover an abundance of cis configurations of mutations in the 386 genomes with an average cis/trans ratio of 60:40, and distinguishable classes of cis- versus trans-abundant genes. This work identifies key features characterizing the diplotypic nature of human genomes and provides a conceptual and analytical framework, rich resources and novel hypotheses on the functional importance of diploidy.

Citing Articles

Haplotype-resolved assembly of a pig genome using single-sperm sequencing.

Niu Y, Fan X, Yang Y, Li J, Lian J, Wang L Commun Biol. 2024; 7(1):738.

PMID: 38890535 PMC: 11189477. DOI: 10.1038/s42003-024-06397-x.


Analysis of 1276 Haplotype-Resolved Genomes Allows Characterization of Cis- and Trans-Abundant Genes.

Hoehe M, Herwig R Methods Mol Biol. 2022; 2590:237-272.

PMID: 36335503 DOI: 10.1007/978-1-0716-2819-5_15.


Interrogating the Human Diplome: Computational Methods, Emerging Applications, and Challenges.

Chan A, Choi Y, Rangan A, Zhang G, Podder A, Berens M Methods Mol Biol. 2022; 2590:1-30.

PMID: 36335489 DOI: 10.1007/978-1-0716-2819-5_1.


HaplotypeTools: a toolkit for accurately identifying recombination and recombinant genotypes.

Farrer R BMC Bioinformatics. 2021; 22(1):560.

PMID: 34809571 PMC: 8607637. DOI: 10.1186/s12859-021-04473-1.


Computational methods for chromosome-scale haplotype reconstruction.

Garg S Genome Biol. 2021; 22(1):101.

PMID: 33845884 PMC: 8040228. DOI: 10.1186/s13059-021-02328-9.


References
1.
Lo C, Liu R, Lee J, Robasky K, Byrne S, Lucchesi C . On the design of clone-based haplotyping. Genome Biol. 2013; 14(9):R100. PMC: 4053695. DOI: 10.1186/gb-2013-14-9-r100. View

2.
Stephens J, Schneider J, Tanguay D, Choi J, Acharya T, Stanley S . Haplotype variation and linkage disequilibrium in 313 human genes. Science. 2001; 293(5529):489-93. DOI: 10.1126/science.1059431. View

3.
Scheet P, Stephens M . A fast and flexible statistical model for large-scale population genotype data: applications to inferring missing genotypes and haplotypic phase. Am J Hum Genet. 2006; 78(4):629-44. PMC: 1424677. DOI: 10.1086/502802. View

4.
Suk E, McEwen G, Duitama J, Nowick K, Schulz S, Palczewski S . A comprehensively molecular haplotype-resolved genome of a European individual. Genome Res. 2011; 21(10):1672-85. PMC: 3202284. DOI: 10.1101/gr.125047.111. View

5.
Hoehe M, Kopke K, Wendel B, Rohde K, Flachmeier C, Kidd K . Sequence variability and candidate gene analysis in complex disease: association of mu opioid receptor gene variation with substance dependence. Hum Mol Genet. 2000; 9(19):2895-908. DOI: 10.1093/hmg/9.19.2895. View