» Articles » PMID: 25400296

Optimizing the Selectivity of Surface-Adsorbing Multivalent Polymers

Overview
Journal Macromolecules
Date 2014 Nov 18
PMID 25400296
Citations 7
Authors
Affiliations
Soon will be listed here.
Abstract

Multivalent polymers are macromolecules containing multiple chemical moieties designed to bind to complementary moieties on a target; for example, a protein with multiple ligands that have affinity for receptors on a cell surface. Though the individual ligand-receptor bonds are often weak, the combinatorial entropy associated with the different possible ligand-receptor pairs leads to a binding transition that can be very sharp with respect to control parameters, such as temperature or surface receptor concentration. We use mean-field self-consistent field theory to study the binding selectivity of multivalent polymers to receptor-coated surfaces. Polymers that have their ligands clustered into a contiguous domain, either located at the chain end or chain midsection, exhibit cooperative surface adsorption and superselectivity when the polymer concentration is low. On the other hand, when the ligands are uniformly spaced along the chain backbone, selectivity is substantially reduced due to the lack of binding cooperativity and due to crowding of the surface by the inert polymer segments in the chain backbone.

Citing Articles

Amplification Free Detection of SARS-CoV-2 Using Multi-Valent Binding.

Roychoudhury A, Allen R, Curk T, Farrell J, McAllister G, Templeton K ACS Sens. 2022; 7(12):3692-3699.

PMID: 36482673 PMC: 9743695. DOI: 10.1021/acssensors.2c01340.


Density Control over MBD2 Receptor-Coated Surfaces Provides Superselective Binding of Hypermethylated DNA.

Kolkman R, Michel-Souzy S, Wasserberg D, Segerink L, Huskens J ACS Appl Mater Interfaces. 2022; 14(36):40579-40589.

PMID: 36052432 PMC: 9478954. DOI: 10.1021/acsami.2c09641.


Biophysical Considerations in the Rational Design and Cellular Targeting of Flexible Polymeric Nanoparticles.

Farokhirad S, Kutti Kandy S, Tsourkas A, Ayyaswamy P, Eckmann D, Radhakrishnan R Adv Mater Interfaces. 2022; 8(23).

PMID: 35782961 PMC: 9248849. DOI: 10.1002/admi.202101290.


Multiscale modeling of protein membrane interactions for nanoparticle targeting in drug delivery.

Eckmann D, Bradley R, Kandy S, Patil K, Janmey P, Radhakrishnan R Curr Opin Struct Biol. 2020; 64:104-110.

PMID: 32731155 PMC: 7666034. DOI: 10.1016/j.sbi.2020.06.023.


Influence of Binding Site Affinity Patterns on Binding of Multivalent Polymers.

Zumbro E, Alexander-Katz A ACS Omega. 2020; 5(19):10774-10781.

PMID: 32455197 PMC: 7240832. DOI: 10.1021/acsomega.0c00334.


References
1.
Albertazzi L, Martinez-Veracoechea F, Leenders C, Voets I, Frenkel D, Meijer E . Spatiotemporal control and superselectivity in supramolecular polymers using multivalency. Proc Natl Acad Sci U S A. 2013; 110(30):12203-8. PMC: 3725081. DOI: 10.1073/pnas.1303109110. View

2.
Dubacheva G, Curk T, Mognetti B, Auzely-Velty R, Frenkel D, Richter R . Superselective targeting using multivalent polymers. J Am Chem Soc. 2014; 136(5):1722-5. PMC: 3919174. DOI: 10.1021/ja411138s. View

3.
Schmatko T, Bozorgui B, Geerts N, Frenkel D, Eiser E, Poon W . A finite-cluster phase in λ-DNA-coated colloids. Soft Matter. 2020; 3(6):703-706. DOI: 10.1039/b618028k. View

4.
Halverson J, Tkachenko A . DNA-programmed mesoscopic architecture. Phys Rev E Stat Nonlin Soft Matter Phys. 2013; 87(6):062310. DOI: 10.1103/PhysRevE.87.062310. View

5.
Di Michele L, Eiser E . Developments in understanding and controlling self assembly of DNA-functionalized colloids. Phys Chem Chem Phys. 2013; 15(9):3115-29. DOI: 10.1039/c3cp43841d. View